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Briefly: What is Al?

Artificial Intelligence

Any technique that
enables computers to
mimic human
intelligence: e.g., logic,
if-then rules, decision
trees, and machine
learning (including
deep learning)
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Briefly: What is Al?

Artificial Intelligence

Machine Learning

Deep Learning Any technique that
A subset of Al that
The subset of machine learning composed enables computers to

_ _ _ includes statistical mimic human
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- tasks with experience. trees. and machine
layered neural networks to vast amounts o - ’
ata Includes deep learning. learning (including

deep learning)




Why deep learning

Deep learning
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Predicting formation enthalpies of crystalline materials

Best conventional machine learning method,

Random Forest:
a) Only elemental
compositions

Logan Ward et al.,
Phys Rev B, 2017
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Predicting formation enthalpies of crystalline materials

Best conventional machine learning method,

Random Forest:
a) Only elemental
compositions

b) Also physical  _
attributes g,
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Predicting formation enthalpies of crystalline materials

Best conventional machine learning method,
Random Forest:

0.40 ——————————————————————
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b) Also physical _ 0.30} - ElemNet |
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Training dataset size
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New methods have limitations: E.g., ImageNet Roulette

judge, justice, jurist: a
public official authorized
to decide questions
brought before a court of
Jjustice

e person, individual,
someone,
somebody, mortal,
soul > adjudicator
> judge, justice,
jurist

e person, individual,
someone,
somebody, mortal,
soul > worker >
skilled worker,
trained worker,
skilled workman >
official,
functionary >
judge, justice,

Queen of England: the
sovereign ruler of
England

orphan: a child who has
lost both parents

e person, individual,
someone,

e person, individual,

swami: a Hindu

jurist o 3 i someone,
_sorr;e>quy, mlodal,_ religious teacher; used X somebody, mortal,
50Ul > Juvenie, as a title of respect soul > leader >

juvenile person >

child, kid, aristocrat, blue

blood, patrician >

e person, individual,

youngster, minor, someone, female aristocrat
shaver, nipper, somebody, mortal, > queen, queen
small fry, tiddler, soul > religious regnant, female
tike, tyke, fry, person > Hindu, monarch > Queen

https://www.excavating.ai nestling > orphan Hindoo > swami of England



Why are we excited about “Al for science”?

Push

* Step changes in Al/ML
methods, notably deep neural
networks

* Major advances in areas like
machine translation, speech
recognition, image processing

* New hardware specialized for
deep neural networks

Pull

* Exploding volumes of data due
to new sensors and
instrumentation exceed
human capabilities

* End of Moore’s Law puts hard
problems out of reach

* Growing complexity of science
and engineering problems
slowing rate of discovery



Argonne’s major Initiatives offer compelling targets

Five major initiatives build on our core capabilities to deliver cutting-edge science and
enable future energy technologies

g

Hard x-ray sciences

Transform understanding of materials and chemical
systems through 3D microscopy

Advanced computing

Deploy exascale computer and advance machine
“Al” is an learning and quantum and neuromorphic computing
opportunity Materials and chemistry

Discover emergent phenomena and synthesize novel

in all five - : )
materials and chemical systems

dareas

The universe as our laboratory

Make leading contributions to physics experiments
that explore the early universe and its dynamics

Energy manufacturing science and engineering

Create science-based approaches to speed scaling of
manufacturing processes for energy technology




Things we can do with Al now

Learn predictive models from data without relying upon theory or deep
mechanistic understanding

Example: predicting materials and chemistry properties

Learn approximate solutions to inverse problems where we have data and
models are not available or are inefficient

Example: phase retrieval in coherent x-ray imaging

Generate large collections of synthetic data that model real data
Example: synthetic sky in cosmology



Things we want to do with Al in the future

Develop methods that can learn from both encoded symbolic theory (e.g.

QM/GR) and large-scale data so we can leverage the vast theoretical
knowledge we have accumulated over hundreds of years

Automate and accelerate discovery from planning, to conjecture, to
experiment, to confirmation and analysis = end-to-end automated science

Create an ability to use Al for generating new theories that address
problematical areas of existing theories



In 10 years ...

= Learned models begin to replace data
— Queryable, portable, pluggable, chainable, secure

= Experimental discovery processes are dramatically refactored
— Models replace experiments, experiments improve models

= Many questions are pursued semi-autonomously at scale
— Searching for materials, molecules and pathways, new physics

= Simulation and Al approaches merge
— Deep integration of ML, numerical simulation and UQ

»

= Theory becomes data for next-generation Al
— Al begins to contribute to advancing theory

= Al becomes common part of scientific laboratory activities

— Infuses scientific, engineering, and operations hitp://bit.ly/2FONJi3



Al for Science @ Argonne targets both research
and infrastructure

Al applications across science and engineering.
Appllcatlons Transformative approaches to simulation and experimental
science.

Al software. Software infrastructure for managing data,

Learning systems models, workflows etc., and for delivering Al capabilities
to 1000s of scientists and engineers.

Mathematics, algorithms; general Al, reinforcement
learning, uncertainty quantification, explainability, etc.

Foundations

Advanced hardware to support Al. Evaluation of new
Hardware architectures and systems; exploration of neuromorphic
and quantum as long term accelerators for Al.
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Al at Argonne: Dozens of applications projects
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Reduced order modeling Prediction of antimicrobial

of laser sintering resistance phenotypes
Materials & Design, 2018 Scientific Reports, 2016, 2018

Identification and
tracking of storms
Journal of Climate, 2016
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Defect-level prediction Learning for dynamic sampling Vehicle energy

consumption prediction
Transportation Research, 2019

in semiconductors in spectroscopy
Chemistry & Materials, 2018 Ultramicroscopy, 2018




Al for Science: Advanced Photon Source Upgrade

Al can drive the scientific and measurement motifs enabled by APS-U

Detect rare events/features in large volumes Metal fatigue, solid-state batteries, APS-U'’s 2-3 orders of magnitude
with nanoscale resolution brain circuitry increased brightness and coherent flux,

. Catalyst coarsening, precision will lead to:
Capture dynamic processes . oo ' , )
synthesis, additive manufacturing * Too much data for humans to handle

Enable multidimensional inquiry, exploring High-entropy alloys, metal fatigue, " Data rates too fast for human
: . . . management
spaces of higher dimension and size catalysts

Control: real-time autonomous execution

Analyze: reconstruct, feature extraction,
' viz, optimized photon dose

Fast, many f
megapixel detectors

usww Convolutional Neural Network Segmentation

Zone Plate Sample
(on-the-fly) (slow)

P

Advanced accelerator control: Al at the edge:
100s of control points, 1000s of inputs autonomous data reduction near the source




Beyond the depth of focus limit: APS

Depth of focus goes like DOF=5.4(transverse resolution)?/A.

Example: DOF=4 um for 10 nm resolution at 10 keV
We can’t treat images as simple projections of an object when going beyond DOF!
How to combine penetrating power of X rays with tomorrow’s resolution limit?

We can describe the forward problem using multislice wave propagation [1,2]
We can then “learn” how to adjust a 3D object to agree with microscope
measurements.

— First demo required 200,000 core hours at Argonne’s LCRC [3]

Now using Automatic Differentiation (part of Al toolkits) to “learn” how to
adjust a 3D object with additional info included

— AD applied to parallelized 2D ptychography [4]

— Presently using Argonne’s ALCF Data Science Program allocation, plus support from
LDRD and also NIH

— Ming Du, Saugat Kandel, Sajid Ali, Northwestern; ANL APS; ANL MCS; ANL MSD.

and ALCF

Simulations: 12 DOF thick

DOF effects

ignored:
reduced
resolution

DOF effects

included with
multislice/AD:
full resolution

3D imaging!

[1] Cowley, Acta Cryst. 10, 609 (1957). [2] Li et al., Optics Express 25, 1831 (2017). [3] Gilles et al., Optica 5, 1078 (2018). [4] Nashed et al., Procedia Computer Science 108, 404 (2017)




Al in materials and chemistry

Al will accelerate discovery through autonomy i
° . ° ° ° :“:.';'
in data collection and physics-based model building il
] . I Interrogate organization,
_ Discover New Phenomena in dynamics, and reactivity of
Extracting rules from Heterogeneous Data Streams rultiscala systems
multimodal data Supervised and unsupervised learning will uncover pathways and 800 nm optical pump
intermediates encoded in multidimensional data ) e
. . N
Predicting Achieve Deterministic Control
sl of Multiscale Transformations
scales Active learning and deep neural networks will navigate reaction
networks and multicomponent phase behavior )

Derive rules of dynamical
organization among charges,
spins, and atoms

_ _ Deliver on the Promise of
Translating design to Predictive Design of Matter

creation

Reinforcement learning and decision trees will autonomously explore
and control multiscale synthesis

Multimodal Streams at APS (10%-10°/day) Advanced sampling for sparse data

High Throughput Synthesis (103/day) Rare-event detection and interpretation

Al Needs

Design and synthesize
Domain specific models functional atomic and defect
landscapes

Data Needs

Simulation/Synthetic Data (10%-10%/day)



Opportunities for Al
in Materials and
Chemistry: Findings
of an Argonne
internal task force

[§

| Area

| AI requirements and challenges

5.1 | Al-Accelerated Ab Initio | Methods development to enable application of ML/AI methods to ex-
Molecular Dynamics for | tremely large collections of samples obtained from simulation studies,
Catalysis and for efficient coupling of simulation and AI components.

5.2 | Ultra-Fast Simulations of | Processing billions of DFT energy evaluations is likely to require ex-
Complex Materials tremely large neural networks. Handling data from multiple sources is

also a key need.

5.3 | Designing New Chemical | Tight integration with experiment. Reinforcement learning and active
Pathways Automatically learning algorithms to guide experimental campaigns. Representation

and update of kinetic table and associated uncertainties.

54 | Real-time Inversion of | Requires methods for integrating physical constraints into neural net-
Multi-modal  Characteriza- | works (NNs). May also build up large enough NNs to require specialized
tion Data Al accelerators.

5.5 | Panoramic Synthesis for Dis- | Would benefit from symbolic Al to create human-interpretable (and, ide-
covery and Deployment of | ally, scientifically testable) design rules for panoramic synthesis.

New Materials

5.6 | Al-Driven Material Discov- | Tight integration with computational simulation. Reinforcement learning
ery for Energy Storage and active learning algorithms to guide computational campaigns.

5.7 | Discovery and Design of | Learning from small data. Transfer learning between different classes of
Magnetic Topological Mate- | materials. Integration of experimental and simulation data.
rials and Magnetic Order

5.8 | Al-Generated Designs of | Requires method development for generative models for networks/paths
Unconventional Structures and supervised learning methods on graphs/path data.

5.9 | Comprehensive Atlas of | Requires advances in natural language processing (NLP) and in methods
Phase Diagrams of All | for propagating uncertainty through many different supervised learning
(Meta)Stable Materials and physical models.

5.10 | Optimizing Gas-phase | Al-based surrogate models for manufacturing processes are needed that
Chemistry for Scale-up of | can enable near-real-time feedback; current multi-scale simulation meth-
Complex Materials ods take days or weeks.




Al for materials and chemistry: Examples

Molecular Informatics Al in Manufacturing

Spectrometer results

QM9-G4MP2-holdout (N = 13,026) E>
10°3 1 14 55 330 1806 10818 "'*.-Q‘:_; M
“ b4

DLHub
|
1 rlm} MDML

T al ¥ &‘j%é
\ Flame imaging

T
\\\\\Eonﬁgure airgap 4

Chemical Structure
Data

Active Sampling Chemical Analysis

Butina Clustering

MAE (eV)

ccccc

pme (&)
.;"7'; o'\

(a)

Sivaraman, Jackson et al. Ward et al. (2019)
(2019)

umber of heavy atoms |

Al-Enhanced Imaging

Battery Life Prediction

.
>

Point of
~ evaluation

% initial capacity

Image produced by conventional reconstruction. Image following enhancement by TomoGA!

Extent of
Liu et al. (2019) remoruse 23



Al for science: High Energy Physics at Argonne

= Energy/Intensity Frontier:
— GANs for detector simulation
— CNN-based event classification
— Learn detector effects that impact physics

— Hyperparameter scans to reduce reconstruction time

— Anomaly detection with autoencoders

— Neuromorphic models/accelerators for use in triggers

= Cosmic Frontier (SciDAC-4):

GANSs for object catalog emulation

GP/DL-based emulators for diverse cosmic probe
summary statistics

CNN-based image classification

Al/ML-based methods for large-scale training data
production and estimation methodology for
photometric redshifts

Likelihood emulation and likelihood-free methods
for statistical inference

Gaussian Random
Field Initial
Conditions

Scientific
Inference
Framework

High-Resolution
N-Body/Hydro

.-’,"',_,w.
‘Simulated Image .

Data Analysis
Pipeline

Multiple Outputs
Halo/Sub-Halo
Identification

',;A(‘:tq.a! Image |

Data
Management
Pipeline

Halo Merger
Trees

Galaxy Modeling

Value-Added
Source Catalogs

Realistic Image
Catalogs

Atmosphere and

Instrument
Modeling

Al applications in an “end-to-end” Cosmic Frontier application:

1) GANs for image emulation, 2) GP and DL-based emulators for summary statistics,
3) CNN-based image classification, 4) Al-based photometric reshift estimation,

5) Likelihood-free methods for inference [Work performed under the Argonne-led
SciDAC-4 project: “Inference and Machine Learning at Extreme Scales”]



Al for transformative manufacturing science

Science Impact Available Data Al Role Manufacturing

Impact

Mimic Pt-group "~ High throughput Data simulation Predict economical

metal catalysis /\g/ 7'\0 catalyst and prediction catalytic conversions

using earth-abundant - %__¢ .  performance

elements L2 testing

Expand Rotational and mass On-the-fly spectral Predict new

thermochemical ATCT spectra of gas-phase deconvolution, synthesis

tables reaction products queryable models for pathways via
pathway prediction flame spray

pyrolysis

Improve models l ¥ %] Real-time battery Anomaly & () Improve battery

of ion transport % &&%| performance and detection, @ . _ # performance

in materials S| Jifetime data correlation i e, |

ANODE  ELELCTROLYTE CATHODE

modeling ¥ wa g-&m
B



Al for Science @ Argonne targets both research
and infrastructure

Al applications across science and engineering.
Appllcatlons Transformative approaches to simulation and experimental
science.

Al software. Software infrastructure for managing data,

Learning Systems models, workflows etc., and for delivering Al capabilities

to 1,000s of scientists and engineers.

Mathematics, algorithms; general Al, reinforcement
learning, uncertainty quantification, explainability, etc.

Foundations

Advanced hardware to support Al. Evaluation of new
Hardware architectures and systems; exploration of neuromorphic
and quantum as long term accelerators for Al.




New applications require new methods

Artificial Intelligence Simulation codes
Scientific instruments Methods cont Computational results
. leer eature . . .
Major use.r facilities enhancement selection Function memoization
Laboratories

Automated labs
Model

creation

Sensors Model Industry, academia
Environmental training New methods
Laboratories Open source codes
Mobile Al accelerators
HPO
Databases
Reference data —— :
Experimental data Model SC|ent|§ts, engineers
Computed properties reduction Surrogates Expert Input
Scientific literature CActivel Goal setting
reinforcement
learning




Deep learning uses massive computing

Exaflop/s-days used
to train:
AlexNet: 0.000007 _
(in 2012) g
AlphaGo Zero: 2 f—“;
(in 2017) 5

x 300,000 in 5.5 years

Source: DeepAl

10,000 —

e Dropout

2013

o ResNets

e GoogleNet

e AlphaGo Zer

o TI7 Dota 1v1

e Xception

e DeepSpeech2

® Visualizing and Understanding Conv Nets

oDQON
I
2014

[
2015

W
2016

{ i \
2017 2018 2019



Relationships between Al/ML and HPC

HPC for ML ML for HPC
ML “What” HPC “What”

Knowledge discovery/categorization in Scientific applications; Biz/Gov analytics

unstructured data E.g., climate, genomic sequencing,
E.g., image, speech, natural language seismic analysis, fraud detection

HPC ‘How” ML “How”

High performance Native data parallelism Pattern classification DL feature learning

Massive memory High throughput / NN-based clustering DSL anomaly detection
management bandwidth Ack: Gadi Singer

* HPC for Al/ML: HPC Technologies are applied to learning tasks to accelerate
computation and/or solve larger problems

e AlI/ML for HPC: Learning Technologies are applied to HPC computations to
improve their performance in some way, e.g., by choosing the next
simulation(s) to perform



Robust Learned Function Accelerators (RLFAs)
Fluidity between simulations and learned models

Physics Code

@lfa(model=‘ML1’, executor=‘A21’)
def func(X):

lSurrogate code generator

geF 151 Bineoy -
1fa = dThub.get_model(‘ML1’)
if 1fa.is_supported(X):
¥ s Uy
else:
NV & Fanets)

Logan Ward, Ben Blaiszik, et al.

Training Engine !
1fa_f.update(X, y) (X, y) e f i

Al Engine

UQ Engine

X,f) - o

Inference Engine

X, f) >y

DOE Infrastructure

{9
-<{0)—C

Model Library

Al Accelerators

Data Storage

31



Deep Learning Needs Exascale

NVIDIA.

Automated model discovery
Hyper parameter optimization
Uncertainty quantification
Flexible ensembles
Cross-Study model transfer
Data augmentation

Synthetic data generation

Reinforcement learning

CANDLE: Exascale Deep Learning Tools

\j
Data Preparation

Batch Normalization
Data Augmentation

—

Scaling/Quantization

Training
Ensembles

Domain Adaptation

[ )
[ |
| Outlier Removal ]
[ ]
[ ]

Concordance Processing

Cross-validation

Model Discovery

Residual Networks J

Transfer Learning

uQ ‘

\ 4

Convolution

Factorial Design

[
[ J
[ Multitask Networks ]
[Population Based HPO ]

Learning Curves ‘

7 )

1
Inference

Source — Target Pairs

Drug Combinations

Confidence Scoring

¥

Outputs

Accuracy / K-rank / R?

Feature importance

Performance Analysis

https://github.com/ECP-CANDLE

T
S~

_\(\v

EXASCARLE
COMPUTING
PROJECT

\
\) |

Semi-supervised
learning, scalable data
analysis and agent
based simulations on
population scale data

Unsupervised learning
coupled with multi-scale
molecular simulations

RAS
Pathway

—

Supervised learning
augmented by stochastic
pathway modeling and
experimental design

-~

-

Scope of CANDLE

Deep Learning

Drug
Response




A rapidly evolving computing/data continuum

More
Flexible

Homogeneous

Specialized

More
Efficient

CPUs

Manycore
CPUs

GPUs

FPGAs

Structured
ASICS

Custom
ASICs

Perf/W —
1X

3X

5-30X

5-30X

20-100X

> 100X

loT/Edge i Fog HPC/Cloud
Size Nano Micro Milli Server Fog Campus Facility
Example Adafruit Particle.io Array of Linux Box Co-located 1000-node Datacenter
Trinket Boron Things Blades cluster
Memory 0.5K 256K 8GB 32GB 256G 32TB 16PB
Network BLE WIFi/LTE WIFi/LTE 1 GigkE 10GigE 40GigkE N*100GigE
Cost S5 $30 $600 $3K S50K S$2M $1000M
l J
1
Size
10” v . . . . v v y
Bandwidth-repeater distance SDM
/
10" } product: a measure of e
= . . WDM ,
x communication ,
w I Optical s
2 1 performance Fig;,sl‘
f Coaxial ,’
o o | Cables' m--
Telephone _ _ -~ "%  Microwaves
— Speed roegragh - e A"
10° = el

=

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

Year

Distance

Sources: http://bit.ly/2SDGHzT, https://doi.org/10.1007/978-3-319-31903-2 8, Pete Beckman



http://bit.ly/2SDGHzT
https://doi.org/10.1007/978-3-319-31903-2_8

New methods require new mechanisms

Artificial Intelligence Simulation codes
Scientific instruments Methods cont Computational results
. leer eature . . .
Major use.r facilities enhancement selection Function memoization
Laboratories

Automated labs
Model

creation

Sensors f Model Industry, academia
Environmental gile training New methods
Laboratories wfras"‘mtur‘l Open source codes

Mobile —I Al accelerators
\ ey | .

Databases
Reference data — .
Experimental data Model SC|ent|§ts, engineers
Computed properties RO i o Surrogates Expert Input
Scientific literature _ Active/ Goal setting
reinforcement
learning




Project Celerity*®
(My “Office of Science Distinguished Scientists Fellow” project)

ldentity new mechanisms needed to bridge the gap between new
(especially “Al-first”) scientific applications and the emerging

data/computing continuum

Via a process of experimentation, discussion, and debate

* Celerity (n) rapidity; swiftness; speed — from Latin celeritas, from which also ¢ for speed of light in vacuum



Bridging the gap

What mechanisms will facilitate the programming of this distributed,
heterogeneous, dynamically evolving Al-first continuum?

Some things that we surely need: Continuum-aware
* Function: Compute wherever is fastest, programming model
cheapest, closest, most accurate, ...
e Data: Access where fastest, cheapest, Function Data
closest, most accurate, ... fabric fabric
* Trust: Balance certainty vs. cost
, Trust Cost
* Cost: Useful estimates of the state of .
fabric map

this dynamic system



Coding the continuum:
Elements of an open solution

Thanks to colleagues, especially:

~
- e

Kyle Chard Ryan Chard

Yadu Babuiji "Ben Blaiszik

Rachana
Ananthakrishnan

&\~.,\Ai ' *a
Tyler Skluzacek Steve Tuecke Anna Woodard Logan Ward

Zhuozhao Li

Model :gt-g
registry DLHub
Flows @ Automate
Write r
b1
programs | & Parsl
Cost
.p | SCRIMP
Function
fabric ﬁ/(/VL(‘)(
Data » Data
fabric ) services
Trust
fabric & Auth




Coding the continuum:
Elements of an open solution

# App that estimates pi by placing points in a box
@python_app

def pi(total):
import random

edge_length = 10000
center = edge_length / 2
c2 = center ** 2

count = @

for i in range(total):
# Drop a random point in the box.

# Count points within the circle
if (x-center)**2 + (y-center)**2 < c2:
count += 1

return (count*4/total)

# App that computes the average of the values
def avg_points(a, b, ¢):
return (a + b + ¢)/3

# Estimate three values for pi
a, b, ¢ = pi(10**6), pi(10**6), pi(10**6)

# Compute the average of the three estimates
avg_pi = avg_points(a, b, c)

# Set the size of the box (edge lLength) in which we drop random points

X,y = random.randint(1l, edge_length),random.randint(1l, edge_length)

| 5

“"Parsl
N

= =

= =

= =

amazon XSEDE
Web SeerceS Extreme Science and Engineering

Discovery Environment

https://arxiv.org/pdf/1905.02158

http://parsl-project.org

Write
programs

F_I'7 -
=*Parsl




Coding the continuum:
Elements of an open solution

In [1]: from funcx_sdk.client import FuncXClient
fxc = FuncXClient()
In [2]: func = """
def add(data):
sum_val = sum(data['data'])
return sum_val
In [3]: fxc.register_function("add_func", func, description="Sum a list of numbers.")
In [4]: input_data = [1, 2, 3]
res = fxc.run(input_data, "user#laptop", "add_func")
In [5]: print(res)
6
Portable code Any access Any computer
Python SSH, Globus, Clusters,

Docker, Shifter, ‘ cluster or HPC ‘

Singularity scheduler

clouds, HPC,
accelerators

Function
fabric




funcX: Transform clouds, clusters, and supercomputers
into high-performance function serving systems

In [1]: from funcx_sdk.client import FuncXClient OA.

fxc = FuncXClient() Jjupyter

¥

In [2]: func = """
def add(data):
sum_val = sum(data['data'])
return sum_val

In [3]: fxc.register_function("add_func", func, description="Sum a list of numbers.")
In [4]: input_data = [1, 2, 3]
res = fxc.run(input_data, "users#laptop"”, "add_func")

In [5]: print(res)
6 EP(x) § EP(x) § EP(x)

f(x), .. + i repo2docker
depend-mmp |

encies flx) g(x)

h(x) k(x) i . .
_____ ( ) a computer into a function serving system




funcX: Transform clouds, clusters, and supercomputers
into high-performance function serving systems

Registration
In [1]: from funcx_sdk.client import FuncXClient f(X), g(x), ... + dependencies

fxc = FuncXClient()

i !

! i repo2docker |

In [2]: func = """ E Register |
def add(data): Execution _ !

1 1

\ 1

. |

: !

 val = (data[ "data'])
el S AX), fx) glx)

[1,2,3 ... n]
In [3]: fxc.register_function("add_func", func, description="Sum a list of numbers.")

In [4]: input_data = [1, 2, 3]

res = fxc.run(input_data, "users#laptop"”, "add_func")

In [5]: print(res)

ISR o B - dad
depend-mmp |
encies - fx) g(x) -

h(x) k(x)

Simply deploy funcX endpoint to tr%nsform
------------------------------------- ! a computer into a function serving system
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Latency (s) for functions running on ALCF Cooley cluster, submitted from login node

(a) tabular file (b) MNIST digit (c) DIALS stills (d) tomographic (e) correlation
extraction prediction process preview spectroscopy



DLHub: Organizing and Serving Models

Models and Processing Logic as a Service

Describe » Publish —— Discover

« Specify the model files Register with DLHub for

DLHub

« Discover servables with advanced search

* Mark up the model with information to make containerization as a servable capabilities through Python SDK or web Ul
. . it discoverable and usable + DLHub service creates unique
Data and Learning Hub for Science o , R endpoint for servable Run
https://www.dlhub.org = create_model( ) from dlhub_sdk.client daport DLHubCUient ° Make predictions by sending data to DLHub
ot title( . dl = DLHubClient() and specifying the servable to use
eeeeeee L. publish(m) from dlhub_sdk.c t import DLHubClien
set_domains( , ", "HPC") dl = DLHubClient()
d = .run(" , data)

= Collect, publish, categorize models X-Ray Science Energy Storage Tomography
= Serve models via APl with access o . ous ot =100

10
dl = DLHubClient() a) 2 1 14 55 330 1806 10818

controls to simplify sharing, e = v trenersiore e || 8

CO n S U m ptl O n y a n d acceSS CDlI Intensity Predicted Structure : 10-3

(via DLHub)

3 4 5 6 7 8 9
Number of Heavy Atoms

= Leverage ALCF resources and
prepare for Exascale ML

R SchNet Delta . B3LYP BN FCHL Delta

= Deploy and scale automatically .,-.--
= Citable DOls for reproducible )
SCi e n Ce Number of Atoms
Cherukara et al. Ward et al. TomoGAN: Liu et al.

Argonne Advanced Computing LDRD



Globus services
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Scientific instruments

Maijor user facilities
Laboratories
Automated labs

Sensors
Environmental
Laboratories
Mobile

Databases
Reference data

Experimental data
Computed properties
Scientific literature

Artificial Intelligence
Methods

Feature
selection

System Software

Resource Authen/Access Mod.el
mgmt creation

gile Libraries training
nfrastructu rtl

enhancement

Runtime

system HPO

Operating
system

Workflow
Model Automation

reduction Surrogates

Active/
reinforcement

learning

We must also rethink other technologies

Simulation codes

Computational results
Function memoization

Industry, academia
New methods
Open source codes
Al accelerators

Scientists, engineers
Expert input
Goal setting




We must also rethink other technologies

Artificial Intelligence Simulation codes
Scientific instruments Methods Foat Computational results
Maijor user facilities canire Function memoization
: selection
Laboratories

Automated labs

AU\ (OLVIVINI Ndustry, academia

New methods
Open source codes
Al accelerators

Sensors 4
Environmental

xDF
Laboratories : L—,Edﬁ
Mobile

frastructu ré

o
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Databases
Reference data — .
Experimental data Model e SC|ent|§ts, engineers
Computed properties RO i o Surrogates Expert Input
Scientific literature _ Active/ Goal setting
reinforcement
learning




Al for Science @ Argonne targets both research
and infrastructure

Al applications across science and engineering.
Appllcatlons Transformative approaches to simulation and experimental
science.

Al software. Software infrastructure for managing data,

Learning systems models, workflows etc., and for delivering Al capabilities
to 1,000s of scientists and engineers.

Mathematics, algorithms; general Al, reinforcement
learning, uncertainty quantification, explainability, etc.

Foundations

Advanced hardware to support Al. Evaluation of new
Hardware architectures and systems; exploration of neuromorphic
and quantum as long term accelerators for Al.




Future directions in foundations

= Leverage expertise in automatic differentiation, symbolic computing,
and optimization to ensure that machine learning for science is
forward looking, methods are robust and models interpretable

=" Many facets relevant to science
— Integration of symbolic computing with machine learning
— Prediction and inference of spatio-temporal processes
— Derivatives for training, sensitivity analysis, optimization, and UQ
— Rapid data analysis to reduce volume or identify features of interest
— Variety of new approaches to inference and UQ
— Identify and account for uncertainty in data sources and computations



In symbols one observes an advantage in
discovery which is greatest when they
express the exact nature of a thing briefly
and, as it were, picture it; then indeed the
labor of thought is wonderfully diminished.

— Gottfried Wilhelm Leibniz



Argonne was the home to a leading symbolic Al group
from the 1960s to the mid 2000s working on Automated
Theorem Proving

Alan Bundy
Edmund Clarke
Tammi Henry
Larry Hines
Deepak Kapur
Matt Kaufmann
Ken Kunen
Vladimur Lifschitz
Ewing Lusk
William McCune
Ross Overbeek
Dana Scott
Mark Stickel
Rick Stevens
Robert Veroff

Richard Waldinger

Steve Winker
Larry Wos
Hantao Zhang

University of Edinburgh

Carnegie Mellon University

University of Tennessee

University of Texas

State University of New York at Albany
Computational Logic
University of Wisconsin
Stanford University
Argonne

Argonne

Argonne

Carnegie Mellon University
SRI

Argonne

University of New Mexico
SRI

Argonne

Argonne

The University of lowa

Attendees at an Argonne
ATP “theory institute” in 1990.

W N

—
N—= OOV Wn A

. Algebraic Geometry

o Cancellative Semigroups on a Cubic Curve
o Uniqueness of the 5-ary Steiner Law

. Cancellative Semigroups
. Lattice Theory

o A Simpler Absorptive Basis for Lattice Theory

o A New Schema for Single Axioms

o A Shorter Single Axiom for Lattice Theory

o A Single Axiom for Weakly Associative Lattices

- Quasilattice Theory

. Uniqueness of Operations in Lattice-like Algebras
. Self-dual Bases for Boolean Algebra

. Self-dual 2-Basis for Group Theory

. Self-dual Bases for Group Varieties

. Quasigroup Theory

. Quasigroup Design Problems

. Single Axioms for Ternary Boolean Algebra

. Single Axioms for Groups

o Ordinary Groups

Abelian Groups

Exponent Groups

Some Permutative Varieties

Groups of Exponent 4 (Kunen)

o Odd Exponent Groups (Hart and Kunen)

O O O O o

. Simple Bases for Moufang L.oops

. Single Axioms for Inverse Loops and Subvarieties
. Left Group and Right Group Calculi

. Fixed Point Combinators

. Semigroup Structure (F3B2)

. Illative Combinatory Logic (Jech)

. Robbins Algebra and Boolean Algebra

. Equivalential Calculus Single Axioms

. Semigroups, Antiautomorphisms, and Involutions
. Independence of Ternary Boolean Algebra Axioms
. Two-valued Sentential Calculus

. Many-valued Sentential Calculus

. Short Proofs in Various Logic Calculi

. Pure Proofs in Equivalential Calculus




Credit: Lloyd DeGrane / The New York Times

Dr. William McCune at Argonne Labs,
Illinois in his office with computer. The
"Proof of Robbins Conjecture"
problem is on the screen.

8 Days on an IBM RS/6000
1996 30 megabytes of memory

Powerful satisfiability modulo theory
(SMT) solvers like Microsoft’s Z3
adapt strategies from Otter

e Bounded model-checking of model programs ﬁ

Termination ﬂ
Security protocols -

Business application modeling ‘

Cryptography .
Model Based Testing (SQL-Server) 4
Your killer-application here

)

D

D

D

D

)

Sources: https://nyti.ms/37X8fUM, http://bit.ly/35J3IcE
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http://bit.ly/35J3lcE

Al research has ‘ https://neurovenge.antonomase.fr

StrOng SymbOliC as Co-citation network of 100

. ] most influential authors in
well as connectionist publications mentioning Al
roots Connectionist

/
Activation model ' / /
: of the neuron ] , Bnckprop-ulﬁon " I C “ N pport Vector \I
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Al for Science @ Argonne targets both research
and infrastructure

Al applications across science and engineering.

App'ications Transformative approaches to simulation and experimental
science.

Al software. Software infrastructure for managing data,

Learning systems models, workflows etc., and for delivering Al capabilities
to 1,000s of scientists and engineers.

Mathematics, algorithms; general Al, reinforcement
learning, uncertainty quantification, explainability, etc.

Foundations

Advanced hardware to support Al. Evaluation of new
Hardware architectures and systems; exploration of neuromorphic
and quantum as long term accelerators for Al.




Aurora: HPC and Al

>> Exaops/s for Al

Argonne &

NATIONAL LABORATORY

Architecture supports three types of computing
= Large-scale Simulation (PDEs, traditional HPC)

= Data Intensive Applications (scalable science pipelines)
= Deep Learning and Emerging Science Al (training and inferencing)



Specialized hardware is emerging that will be
10x — 100x the performance of
general purpose CPU and GPU designs for Al

VCs investing >$4B in startups
for Al acceleration

Which platforms will be good for science?



— Tech Giants/Systems —

— Startup Worldwide
Go g|€ (intel)' arm gaggfigog @ VWAV=  Graphcore’
L LEVH . R
B Microsoft SAMSUNG SYNopPsys o @ thinci
aWs O BITMAIN -
‘ imagination . . KALRAY ]k Ce
< nvioia. inelL Tusio O HAILD
= L
facebook QUALCONVW cadence F Esperanto ? Tenstorrent
CEVA .
- " AMDA P R&WeRe  brainchip
’ ' @smcon
‘ PEZY Computing GREEN
\"’ o x YI @ si Five @ ?Iy‘lﬁ ‘‘‘‘‘‘‘‘‘‘‘‘‘
\ l u. . .
N DaldEE £ XILINX. ARTERISIE NISPESCH .5 36 O Awvonve Tachyum?
e f meourer 4 “alep GUC [ #me logiX
Alibaba Group ; NextVPU
PIEEEED
o) " © BROADCOM’ Q Jaiie Rl ((Enflame %Qw[dmn R NOVUMIND ks
FUJITSU NOKIA T e, &R now ke =
TOSHIBA M - SR AR X E
rerree Compiler Benchmarks
Hewlett Pack NVIDIA Te RT
Hewlet: Pac Rackchip X O cLow . . creer Mipers AI-Benchmark Al Matrix. AN\
- nGraph Compiler stack (Beta) eploid\/IL

— IC Vender/Fabless —

Al Chip Landscape

— IP/Design Service —

Startup in China

More on https://basicmi.github.io/Al-Chip/




An Al accelerator testbed

Engaging the community to understand and improve specialized Al hardware
for science

Dozens of proposed Al accelerators promise

10x - 1000x acceleration for Al workloads. Al testbed will:

1. Provide an open and unbiased environment for
evaluation of Al accelerator technologies

2. Disseminate information about use cases, software,

performance on test problems

3. Support collaborations with Al technology developers,

academics, commercial Al, DOE labs

IC
Vendors

Tech
Giants &
HPC
Vendors

P
Vendors

Startups
in China

Startups
Worldwide

Intel, Qualcomm, Nvidia, Samsung, AMD, Xilinx, IBM, STMicroelectronics, NXP, Marvell, MediaTek,

HiSilicon, Rockchip

Google, Amazon_AWS, Microsoft, Apple, Aliyun, Alibaba Group, Tencent Cloud, Baidu, Baidu
Cloud, HUAWEI Cloud, Fuijitsu, Nokia, Facebook, HPE, Tesla

ARM, Synopsys, Imagination, CEVA, Cadence, VeriSilicon, Videantis

Cambricon, Horizon Robotics, Bitmain, Chipintelli, Thinkforce, Unisound, AlSpeech, Rokid,
NextVPU, Canaan, Enflame, Eesay Tech

Cerebras, Wave Computing, Graphcore, PEZY, Tenstorrent, ThinCl, Koniku, Adapteva, Knowm,
Mythic, Kalray, BrainChip, Almotive, DeepScale, Leepmind, Krtkl, NovuMind, REM, TERADEEP,
DEEP VISION, Groq, KAIST DNPU, Kneron, Esperanto Technologies, Gyrfalcon Technology,

SambaNova Systems, GreenWaves Technology, Lightelligence, Lightmatter, ThinkSilicon, Innogrit,

Kortiq, Hailo, Tachyum,AlphalCs,Syntiant, Habana, aiCTX, Flex Logix, Preferred Network, Cornami,
Anaflash, Optaylsys, Eta Compute

13
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12

44

Staged evaluation enables identification
of most promising systems for science

https://github.com/basicmi/Al-Chip



Argonne is developing Al infrastructure

* Argonne is partnering with Cerebras to
develop and deploy an Al computing
platform

cerebras ® A
« Scientific Al models from cancer, Vily
cosmology, brain imaging, and materials ey P Tt alhs
SC | e n Ce a re t h e f| r St eX a m p I e S t h at W| I I b e problems. We value integrity, passion, problem solving ability, and a sense of humor, and are

always looking for extraordinary people to join our team.

deployed

* Our goal is to accelerate relevant Al _
model types for problems in materials, CONCLUSION: FUTURE @erebras

b | om Ed | Cd | ) cosmo I Ogy, h | g h -ene rgy < Massive multi-core engines that enable model parallelism

p hys | CS' ene rgy Syste m S, Synt h et | C < Orders of magnitude greater memory and communication BW
b I O I Ogyl CI I m ate, SOftwa reo pt| m Izatlo n’ « Unconstrained methods, e.g., large and small mini-batch
architecture research etc.

< Capture weight and activation sparsity for higher performance

< Support research and execution of emergent model architectures
(not just those of today)



DOE’s Al for Science Townhalls

Organized by Argonne, Oak Ridge and Berkeley with participation from all DOE labs

* Four “Townhalls” aimed at getting input from the DOE community on
opportunities and requirements for the next 5-10 years in computing
with a focus on convergence between HPC and Al

 July (Argonne), August (Oak Ridge), September (Berkeley), October

Modeling and

(WaShIngtOn) Simulation at the

Exascale for

e Modeled after the 2007 Townhalls that launched the Exascale Energy and the

Environment

Computing Initiative

* Each meeting covers roughly the same ground, geographically
distributed to enable local participation

* Applications in science, energy and technology

* Software, math and methods, hardware, data management,
computing facilities, infrastructure, integration with experimental
facilities, etc.

e ~300 people per meeting
e Output will be a report to guide strategic planning at Labs and DOE




| have covered just a few of the many activities
underway at Argonne on Al in science

We look forward to collaboration with Fermilab and Uchicago
In applications, learning systems, foundations, and hardware

lan Foster
foster@anl.gov

A 20-Year Community Roadmap for
Artificial Intelligence Research in the US

http://bit.ly/2JK80Z9

Computing Community Consortium // AAAI
Catalyst Asocan for o et
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