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Artificial Intelligence

Any technique that 
enables computers to 

mimic human 
intelligence: e.g., logic, 
if-then rules, decision 

trees, and machine 
learning (including 

deep learning)  

Briefly: What is AI?



Machine Learning
A subset of AI that 
includes statistical 

techniques that enable 
computers to improve at 

tasks with experience. 
Includes deep learning.
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Deep Learning
The subset of machine learning composed 
of algorithms that permit software to train 

itself to perform tasks, like speech and 
image recognition, by exposing multi-

layered neural networks to vast amounts of 
data    
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Predicting formation enthalpies of crystalline materials
Best conventional machine learning method, 
Random Forest:
a) Only elemental 

compositions

(DFT-computed OQMD)

b

Given DHf e.g.:
Cr2Ni3
Al2O3

Predict:
TiO2 à?

Logan Ward et al., 
Phys Rev B, 2017



Best conventional machine learning method, 
Random Forest:
a) Only elemental 

compositions
b) Also physical 

attributes

(DFT-computed OQMD)

b

Compute
145 physical 
properties:
• Stoichiometric
• Elemental 

property 
statistics

• Electronic 
structure

• Ionic 
compoundLogan Ward et al., 

Phys Rev B, 2017

Predicting formation enthalpies of crystalline materials



Best conventional machine learning method, 
Random Forest:
a) Only elemental 

compositions
b) Also physical 

attributes

Dipendra Jha

ElemNet,
17-layer DNN: 
Only elemental 
compositions

(Also runs 100x 
faster than RF) 

3,500550

Jha, Ward, et al., 2018.
(DFT-computed OQMD)

Logan Ward et al., 
Phys Rev B, 2017

Predicting formation enthalpies of crystalline materials



New methods have limitations: E.g., ImageNet Roulette

https://www.excavating.ai



Why are we excited about “AI for science”?
Push

§Step changes in AI/ML 
methods, notably deep neural 
networks

§Major advances in areas like 
machine translation, speech 
recognition, image processing 

§New hardware specialized for 
deep neural networks

Pull
• Exploding volumes of data 
due to new sensors and 
instrumentation exceed 
human capabilities

• End of Moore’s Law puts 
hard problems out of reach 

• Growing complexity of 
science and engineering 
problems slowing rate of 
discovery
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Argonne’s major Initiatives offer compelling targets
Five major initiatives build on our core capabilities to deliver cutting-edge science and 
enable future energy technologies

“AI” is an 
opportunity 
in all five 
areas

Hard x-ray sciences
Transform understanding of materials and chemical 
systems through 3D microscopy
Advanced computing
Deploy exascale computer and advance machine 
learning and quantum and neuromorphic computing

Materials and chemistry
Discover emergent phenomena and synthesize novel 
materials and chemical systems
The universe as our laboratory
Make leading contributions to physics experiments 
that explore the early universe and its dynamics
Energy manufacturing science and engineering
Create science-based approaches to speed scaling of 
manufacturing processes for energy technology



Things we can do with AI now

Learn predictive models from data without relying upon theory or deep 
mechanistic understanding 

Example: predicting materials and chemistry properties

Learn approximate solutions to inverse problems where we have data and 
models are not available or are inefficient

Example: phase retrieval in coherent x-ray imaging 

Generate large collections of synthetic data that model real data
Example: synthetic sky in cosmology



Things we want to do with AI in the future

Develop methods that can learn from both encoded symbolic theory (e.g. 
QM/GR) and large-scale data so we can leverage the vast theoretical 
knowledge we have accumulated over hundreds of years

Automate and accelerate discovery from planning, to conjecture, to 
experiment, to confirmation and analysis ⇒ end-to-end automated science

Create an ability to use AI for generating new theories that address 
problematical areas of existing theories



In 10 years …
§ Learned models begin to replace data

– Queryable, portable, pluggable, chainable, secure

§ Experimental discovery processes are dramatically refactored
– Models replace experiments, experiments improve models

§ Many questions are pursued semi-autonomously at scale
– Searching for materials, molecules and pathways, new physics

§ Simulation and AI approaches merge
– Deep integration of ML, numerical simulation and UQ

»

§ Theory becomes data for next-generation AI
– AI begins to contribute to advancing theory

§ AI becomes common part of scientific laboratory activities
– Infuses scientific, engineering, and operations http://bit.ly/2FOnJi3



Foundations Mathematics, algorithms; general AI, reinforcement 
learning, uncertainty quantification, explainability, etc.

Hardware
Advanced hardware to support AI. Evaluation of new 
architectures and systems; exploration of neuromorphic 
and quantum as long term accelerators for AI.

Learning systems
AI software. Software infrastructure for managing data, 
models, workflows etc., and for delivering AI capabilities 
to 1000s of scientists and engineers.

Applications
AI applications across science and engineering. 
Transformative approaches to simulation and experimental 
science.

AI for Science @ Argonne targets both research 
and infrastructure
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AI at Argonne: Dozens of applications projects

Reduced order modeling 
of laser sintering
Materials & Design, 2018

Identification and 
tracking of storms
Journal of Climate, 2016

Prediction of antimicrobial 
resistance phenotypes
Scientific Reports, 2016, 2018

Defect-level prediction
in semiconductors
Chemistry & Materials, 2018

Vehicle energy 
consumption prediction
Transportation Research, 2019

Learning for dynamic sampling 
in spectroscopy
Ultramicroscopy, 2018



AI for Science: Advanced Photon Source Upgrade
AI can drive the scientific and measurement motifs enabled by APS-U

Detect rare events/features in large volumes 
with nanoscale resolution

Metal fatigue, solid-state batteries, 
brain circuitry

Capture dynamic processes Catalyst coarsening, precision 
synthesis, additive manufacturing

Enable multidimensional inquiry, exploring 
spaces of higher dimension and size

High-entropy alloys, metal fatigue, 
catalysts

APS-U’s 2-3 orders of magnitude 
increased brightness and coherent flux, 
will lead to: 
§ Too much data for humans to handle
§ Data rates too fast for human 

management

Analyze: reconstruct, feature extraction, 
viz, optimized photon dose

Control: real-time autonomous execution 

AI at the edge: 
autonomous data reduction near the source

Advanced accelerator control:
100s of control points, 1000s of inputs

Fast, many 
megapixel detectors



Beyond the depth of focus limit: APS and ALCF

[1] Cowley, Acta Cryst. 10, 609 (1957).  [2] Li et al., Optics Express 25, 1831 (2017).  [3] Gilles et al., Optica 5, 1078 (2018).  [4] Nashed et al., Procedia Computer Science 108, 404 (2017) 

Simulations: 12 DOF thick

DOF effects 
ignored: 
reduced 
resolution

DOF effects 
included with 
multislice/AD: 
full resolution 
3D imaging!

Depth of focus goes like DOF≃5.4(transverse resolution)2/λ.
§ Example: DOF=4 μm for 10 nm resolution at 10 keV
§ We can’t treat images as simple projections of an object when going beyond DOF!
§ How to combine penetrating power of X rays with tomorrow’s resolution limit?

§ We can describe the forward problem using multislice wave propagation [1,2]
§ We can then “learn” how to adjust a 3D object to agree with microscope 

measurements.
– First demo required 200,000 core hours at Argonne’s LCRC [3]

§ Now using Automatic Differentiation (part of AI toolkits) to “learn” how to 
adjust a 3D object with additional info included
– AD applied to parallelized 2D ptychography [4]
– Presently using Argonne’s ALCF Data Science Program allocation, plus support from 

LDRD and also NIH
– Ming Du, Saugat Kandel, Sajid Ali, Northwestern; ANL APS; ANL MCS; ANL MSD.



Deliver on the Promise of 
Predictive Design of Matter
Reinforcement learning and decision trees will autonomously explore 
and control multiscale synthesis

Translating design to 
creation

Discover New Phenomena in 
Heterogeneous Data Streams 
Supervised and unsupervised learning will uncover pathways and 
intermediates encoded in multidimensional data 

Extracting rules from 
multimodal data

Achieve Deterministic Control 
of Multiscale Transformations
Active learning and deep neural networks will navigate reaction 
networks and multicomponent phase behavior

Predicting 
transformations across 

scales

Interrogate organization, 
dynamics, and reactivity of 
multiscale systems

Derive rules of dynamical 
organization among charges, 
spins, and atoms

Design and synthesize 
functional atomic and defect 
landscapes

Multimodal Streams at APS (104-105/day)

Simulation/Synthetic Data (101-104/day)

High Throughput Synthesis (103/day)

Advanced sampling for sparse data

Domain specific models

Rare-event detection and interpretation
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AI in materials and chemistry
AI will accelerate discovery through autonomy 
in data collection and physics-based model building



Opportunities for AI 
in Materials and 
Chemistry: Findings 
of an Argonne 
internal task force



AI for materials and chemistry: Examples
Molecular Informatics

Sivaraman, Jackson et al. 
(2019)

Ward et al. (2019)

AI in Manufacturing

AI-Enhanced Imaging Battery Life Prediction

23Liu et al. (2019)



AI for science: High Energy Physics at Argonne
Gaussian Random 

Field Initial 
Conditions

High-Resolution  
N-Body/Hydro  

Code

Multiple Outputs  
Halo/Sub-Halo 
Identification

Halo  Merger 
Trees

Galaxy Modeling 

Value-Added 
Source Catalogs

Realistic Image 
Catalogs

Atmosphere and 
Instrument 
Modeling

Data 
Management 

Pipeline

Data Analysis 
Pipeline

Scientific 
Inference 

Framework

Simulated Image Actual Image

AI applications in an “end-to-end” Cosmic Frontier application:
1) GANs for image emulation, 2) GP and DL-based emulators for summary statistics, 
3) CNN-based image classification, 4) AI-based photometric reshift estimation, 
5) Likelihood-free methods for inference [Work performed under the Argonne-led 
SciDAC-4 project:  “Inference and Machine Learning at Extreme Scales”]

§ Energy/Intensity Frontier:
– GANs for detector simulation
– CNN-based event classification 
– Learn detector effects that impact physics
– Hyperparameter scans to reduce reconstruction time
– Anomaly detection with autoencoders
– Neuromorphic models/accelerators for use in triggers

§ Cosmic Frontier (SciDAC-4):
– GANs for object catalog emulation
– GP/DL-based emulators for diverse cosmic probe 

summary statistics
– CNN-based image classification
– AI/ML-based methods for large-scale training data 

production and estimation methodology for 
photometric redshifts

– Likelihood emulation and likelihood-free methods 
for statistical inference



AI for transformative manufacturing science

Science Impact Available Data AI Role Manufacturing 
Impact

Mimic Pt-group 
metal catalysis 
using earth-abundant 
elements

High throughput 
catalyst 
performance 
testing

Data simulation 
and prediction

Predict economical 
catalytic conversions

Expand 
thermochemical 
tables

Rotational and mass 
spectra of gas-phase 
reaction products

Predict new 
synthesis 
pathways via
flame spray 
pyrolysis

Improve models 
of ion transport 
in materials

Real-time battery 
performance and 
lifetime data

Anomaly 
detection, 
correlation 
modeling

Improve battery 
performance

On-the-fly spectral 
deconvolution, 
queryable models for 
pathway prediction



Foundations Mathematics, algorithms; general AI, reinforcement 
learning, uncertainty quantification, explainability, etc.

Hardware
Advanced hardware to support AI. Evaluation of new 
architectures and systems; exploration of neuromorphic 
and quantum as long term accelerators for AI.

Learning systems
AI software. Software infrastructure for managing data, 
models, workflows etc., and for delivering AI capabilities 
to 1,000s of scientists and engineers.

Applications
AI applications across science and engineering. 
Transformative approaches to simulation and experimental 
science.

AI for Science @ Argonne targets both research 
and infrastructure



New applications require new methods
Infrastructure for AI-enabled Science

Scientific instruments
Major user facilities
Laboratories
Automated labs
…

Sensors
Environmental
Laboratories
Mobile
…

Simulation codes
Computational results
Function memoization
…

Databases
Reference data
Experimental data
Computed properties
Scientific literature
…

Scientists, engineers
Expert input
Goal setting
…

Industry, academia
New methods
Open source codes
AI accelerators
…

Data 
ingest

Inference

HPO

Data 
enhancement

Data 
QA/QC

Feature 
selection

Model 
training

UQ

Model 
reduction

Active/
reinforcement 

learning

Artificial Intelligence
Methods

Data

Models

AcceleratorsCompute

Agile
Infrastructure

Surrogates

System Software

Data 
mgmt

Operating 
system

Portability

Compilers

Runtime 
system

Workflow
Automation

Prog. 
envs.

Languages

Model 
creation

Libraries

Resource 
mgmt Authen/Access



Source: DeepAI

Exaflop/s-days used 
to train:  

AlexNet: 0.000007
(in 2012)

AlphaGo Zero: 2
(in 2017) 

x 300,000 in 5.5 years 

Deep learning uses massive computing



Relationships between AI/ML and HPC

• HPC for AI/ML:  HPC Technologies are applied to learning tasks to accelerate 
computation and/or solve larger problems

• AI/ML for HPC:  Learning Technologies are applied to HPC computations to 
improve their performance in some way, e.g., by choosing the next 
simulation(s) to perform

ML for HPCHPC for ML

Ack: Gadi Singer



Robust Learned Function Accelerators (RLFAs)
Fluidity between simulations and learned models

31
Logan Ward, Ben Blaiszik, et al.



CANDLE: Exascale Deep Learning Tools
Deep Learning Needs Exascale
§ Automated model discovery
§ Hyper parameter optimization
§ Uncertainty quantification
§ Flexible ensembles
§ Cross-Study model transfer
§ Data augmentation
§ Synthetic data generation
§ Reinforcement learning

https://github.com/ECP-CANDLE



A rapidly evolving computing/data continuum

Sources: http://bit.ly/2SDGHzT, https://doi.org/10.1007/978-3-319-31903-2_8, Pete Beckman 

FPGAs

Distance

Speed

Size
Bandwidth-repeater distance 
product: a measure of 
communication 
performance 

http://bit.ly/2SDGHzT
https://doi.org/10.1007/978-3-319-31903-2_8


New methods require new mechanisms
Infrastructure for AI-enabled Science

Scientific instruments
Major user facilities
Laboratories
Automated labs
…

Sensors
Environmental
Laboratories
Mobile
…

Simulation codes
Computational results
Function memoization
…

Databases
Reference data
Experimental data
Computed properties
Scientific literature
…

Scientists, engineers
Expert input
Goal setting
…

Industry, academia
New methods
Open source codes
AI accelerators
…

Data 
ingest

Inference

HPO

Data 
enhancement

Data 
QA/QC

Feature 
selection

Model 
training

UQ

Model 
reduction

Active/
reinforcement 

learning

Artificial Intelligence
Methods

Data

Models

AcceleratorsCompute

Agile
Infrastructure

Surrogates

System Software

Data 
mgmt

Operating 
system

Portability

Compilers

Runtime 
system

Workflow
Automation

Prog. 
envs.

Languages

Model 
creation

Libraries

Resource 
mgmt Authen/Access



Project Celerity* 
(My “Office of Science Distinguished Scientists Fellow” project) 

Identity new mechanisms needed to bridge the gap between new 
(especially “AI-first”) scientific applications and the emerging 
data/computing continuum

Via a process of experimentation, discussion, and debate

* Celerity (n) rapidity; swiftness; speed – from Latin celeritas, from which also c for speed of light in vacuum



Bridging the gap
What mechanisms will facilitate the programming of this distributed, 
heterogeneous, dynamically evolving AI-first continuum?

Some things that we surely need:
• Function: Compute wherever is fastest, 

cheapest, closest, most accurate, …
• Data: Access where fastest, cheapest, 

closest, most accurate, …
• Trust: Balance certainty vs. cost
• Cost: Useful estimates of the state of 

this dynamic system 

Continuum-aware 
programming model

Function 
fabric

Data 
fabric

Trust 
fabric

Cost 
map 



Coding the continuum: 
Elements of an open solution

Zhuozhao Li     Tyler Skluzacek Steve Tuecke Anna Woodard     Logan Ward 

Rachana          Yadu Babuji Ben Blaiszik Kyle Chard          Ryan Chard
Ananthakrishnan

Thanks to colleagues, especially:

funcX

Model 
registry

Flows

Cost
map

Write 
programs

Function 
fabric

Data 
fabric

Trust 
fabric

DLHub

Data 
services

Auth

SCRIMP

Automate



Automate

Coding the continuum: 
Elements of an open solution

https://arxiv.org/pdf/1905.02158 http://parsl-project.org

funcX

Model 
registry

Flows

Cost
map

Write 
programs

Function 
fabric

Data 
fabric

Trust 
fabric

DLHub

Data 
services

Auth

SCRIMP



Automate

Coding the continuum: 
Elements of an open solution

Portable code     Any access      Any computer 
Python

Docker, Shifter, 
Singularity

Clusters, 
clouds, HPC, 
accelerators

SSH, Globus, 
cluster or HPC 

scheduler

funcX

Model 
registry

Flows

Cost
map

Write 
programs

Function 
fabric

Data 
fabric

Trust 
fabric

DLHub

Data 
services

Auth

SCRIMP



funcX: Transform clouds, clusters, and supercomputers 
into high-performance function serving systems  

40

EP(x) EP(x) EP(x) EP(x)

funcX

Simply deploy funcX endpoint to transform 
a computer into a function serving system

repo2dockerRegister EP(x)

f(x) g(x)
h(x) k(x)

f(x) g(x)

EP(x) h(x) k(x)

f(x), … + 
depend-
encies
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EP(x) EP(x) EP(x) EP(x)

f(x)

g(x)

h(x)

k(x)

repo2dockerRegister

f(x) g(x)
h(x) k(x)

Registration
f(x), g(x), … + dependencies

EP(x) registry

Execution
f(x), …

[1,2,3 … n]

Simply deploy funcX endpoint to transform 
a computer into a function serving system

funcX: Transform clouds, clusters, and supercomputers 
into high-performance function serving systems  

repo2dockerRegister EP(x)

f(x) g(x)
h(x) k(x)

f(x) g(x)

EP(x) h(x) k(x)

f(x), … + 
depend-
encies



Latency (s) for functions running on ALCF Cooley cluster, submitted from login node 

Strong scaling

Weak scaling



DLHub: Organizing and Serving Models

§ Collect, publish, categorize models
§ Serve models via API with access 

controls to simplify sharing, 
consumption, and access

§ Leverage ALCF resources and 
prepare for Exascale ML

§ Deploy and scale automatically
§ Citable DOIs for reproducible 

science

Argonne Advanced Computing LDRD
Cherukara et al.

Models and Processing Logic as a Service

Ward et al.

Input

Output

Energy Storage TomographyX-Ray Science

TomoGAN: Liu et al.



operated by UChicago for researchers worldwide globus.org

Globus services





Infrastructure for AI-enabled Science
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We must also rethink other technologies
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DLHub

xDF

xDF Connect

CANDLEfuncX

ParslSwift

DeepHyper

Globus

Waggle

Ripple

AutoMOMML

Petrel



Foundations Mathematics, algorithms; general AI, reinforcement 
learning, uncertainty quantification, explainability, etc.

Hardware
Advanced hardware to support AI. Evaluation of new 
architectures and systems; exploration of neuromorphic 
and quantum as long term accelerators for AI.

Learning systems
AI software. Software infrastructure for managing data, 
models, workflows etc., and for delivering AI capabilities 
to 1,000s of scientists and engineers.

Applications
AI applications across science and engineering. 
Transformative approaches to simulation and experimental 
science.

AI for Science @ Argonne targets both research 
and infrastructure



§Leverage expertise in automatic differentiation, symbolic computing, 
and optimization to ensure that machine learning for science is 
forward looking, methods are robust and models interpretable

§Many facets relevant to science 
– Integration of symbolic computing with machine learning
– Prediction and inference of spatio-temporal processes
– Derivatives for training, sensitivity analysis, optimization, and UQ
– Rapid data analysis to reduce volume or identify features of interest
– Variety of new approaches to inference and UQ
– Identify and account for uncertainty in data sources and computations

Future directions in foundations 



In symbols one observes an advantage in 
discovery which is greatest when they 
express the exact nature of a thing briefly 
and, as it were, picture it; then indeed the 
labor of thought is wonderfully diminished.

— Gottfried Wilhelm Leibniz 



Argonne was the home to a leading symbolic AI group 
from the 1960s to the mid 2000s working on Automated 
Theorem Proving

Attendees at an Argonne
ATP “theory institute” in 1990.



8 Days on an IBM RS/6000
30 megabytes of memory1996

Powerful satisfiability modulo theory 
(SMT) solvers like Microsoft’s Z3 
adapt strategies from Otter

Sources: https://nyti.ms/37X8fUM, http://bit.ly/35J3lcE

https://nyti.ms/37X8fUM
http://bit.ly/35J3lcE


53

Co-citation network of 100 
most influential authors in 
publications mentioning AI

https://neurovenge.antonomase.frAI research has 
strong symbolic as 
well as connectionist 
roots

Evolution of academic influence of connectionist and symbolic approaches to AI



Foundations Mathematics, algorithms; general AI, reinforcement 
learning, uncertainty quantification, explainability, etc.

Hardware
Advanced hardware to support AI. Evaluation of new 
architectures and systems; exploration of neuromorphic 
and quantum as long term accelerators for AI.

Learning systems
AI software. Software infrastructure for managing data, 
models, workflows etc., and for delivering AI capabilities 
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Aurora: HPC and AI
>> Exaops/s for AI

Architecture supports three types of computing
§ Large-scale Simulation (PDEs, traditional HPC)
§ Data Intensive Applications (scalable science pipelines)
§ Deep Learning and Emerging Science AI (training and inferencing)



Specialized hardware is emerging that will be 
10x – 100x the performance of 

general purpose CPU and GPU designs for AI

VCs investing >$4B in startups 
for AI acceleration

Which platforms will be good for science?





An AI accelerator testbed
Engaging the community to understand and improve specialized AI hardware 
for science

Dozens of proposed AI accelerators promise 
10x - 1000x acceleration for AI workloads. AI testbed will:
1. Provide an open and unbiased environment for 

evaluation of AI accelerator technologies
2. Disseminate information about use cases, software, 

performance on test problems
3. Support collaborations with AI technology developers, 

academics, commercial AI, DOE labs

https://github.com/basicmi/AI-Chip

Device

Staged evaluation enables identification 
of most promising systems for science

Subrack Rack



Argonne is developing AI infrastructure

• Argonne is partnering with Cerebras to 
develop and deploy an AI computing 
platform

• Scientific AI models from cancer, 
cosmology, brain imaging, and materials 
science are the first examples that will be 
deployed

• Our goal is to accelerate relevant AI 
model types for problems in materials, 
biomedical, cosmology, high-energy 
physics, energy systems, synthetic 
biology, climate, software optimization, 
architecture research etc.



DOE’s AI for Science Townhalls

• Four “Townhalls” aimed at getting input from the DOE community on 
opportunities and requirements for the next 5-10 years in computing 
with a focus on convergence between HPC and AI

• July (Argonne), August (Oak Ridge), September (Berkeley), October 
(Washington)

• Modeled after the 2007 Townhalls that launched the Exascale 
Computing Initiative

• Each meeting covers roughly the same ground, geographically 
distributed to enable local participation

• Applications in science, energy and technology
• Software, math and methods, hardware, data management, 

computing facilities, infrastructure, integration with experimental 
facilities, etc.

• ~300 people per meeting
• Output will be a report to guide strategic planning at Labs and DOE

Organized by Argonne, Oak Ridge and Berkeley with participation from all DOE labs 



I have covered just a few of the many activities 
underway at Argonne on AI in science

We look forward to collaboration with Fermilab and Uchicago
in applications, learning systems, foundations, and hardware

Ian Foster
foster@anl.gov
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http://bit.ly/2JK8OZ9


