

BENT CRYSTALS in the LHC

a way to improve the collimation efficiency in modern hadron colliders

Walter Scandale CERN

For the UA9 collaboration

Erice
October 29 2008

Outlook

- Why using crystals in hadron colliders
- ♦ The H8-RD22 experiment at CERN (test in a single-pass beam-line)
 - ♦ Experimental layout
 - Main results
- ♦ The UA9 experiment at the CERN-SPS
 - (test in a circular accelerator)
 - Layout
 - ♦ Expected efficiency
- **♦** Conclusions

Two stage collimation

in a circular collider

W. Scandale 3

How it works?

- Short scatterer deflects the primary halo (aperture $r_1 = N_1 \sqrt{\beta_{TW/SS}} \epsilon$)
- Long collimator intercepts the secondary halo (ap. $r_2=N_2\sqrt{\beta_{TW/SS}}\epsilon$)
- halo particles captured through amplitude increase via multiple scattering and multi-turn effect.

Requirements for LHC

Nominal beam power: 362 MJ

Super-Conducting Environment

Proton losses into cold aperture

Local heat deposition

Magnet can quench

Illustration of LHC dipole in tunnel

Energy [GeV]	Loss rate (10 h lifetime)	Quench limit [p/s/m] (steady losses)	Cleaning requirement
450	8.4e9 p/s	7.0e8 p/s/m	92.6 %
7000	8.4e9 p/s	7.6e6 p/s/m	99.91 %

Control transient losses (10 turns) to ~1e-9 of nominal intensity (top)!

Capture (clean) lost protons before they reach cold aperture!

Required efficiency: ~ 99.9 % (assuming losses distribute over 50 m)

RA LHC MAC 13/3/03

Courtesy of R. Assmann

Ion collimation: why an issue?

Nominal ion beam in LHC has 100 times less beam power than proton beam, but

Physics process	Proton	²⁰⁸ Pb
$\frac{dE}{Edx}$ due to ionisation	-0.12 %/m -0.0088 %/m	-9.57 %/m -0.73%/m
Mult. Scattering (projected r.m.s. angle)	73.5μrad/m ^½ 4.72μrad/m ^½	73.5μrad/m ^½ 4.72μrad/m ^½
Nucl. Interaction length ≈fragment. length for ions	38.1cm 38.1cm	2.5cm ▼ 2.5cm
Electromagnetic dissociation length	,	33cm 19cm

 $L \approx L_{\text{int}} = \frac{A_{coll}}{N_A \rho (\sigma_{had} + \sigma_{emd})}$

High probability of nuclear interactions in the scatterer

→ strong reduction of the 2stage collimation EFFICIENCY

Curtesy of Bellodi

~20 times higher probability of nuclear interactions respect to p

A new disturbance respect to p

fragmented nuclei, Monte Carlo estimate of the x-sections

loss 1 n (59%) \rightarrow 207Pb loss 2 n (11%) \rightarrow 206Pb

Particle-crystal interaction

Possible processes:

- multiple scattering
- channeling
- volume capture
- de-channeling
- ♦ volume reflection

Volume reflection

Prediction in 1985-'87 by A.M. Taratin and S.A. Vorobiev,

First observation 2006 (IHEP - PNPI - CERN)

The H8RD22 apparatus:

Single pass tests in the SPS-North Area

Strip crystals

Built at INFN - Ferrara in collaboration with IHEP - Protvino

The main curvature due to external forces induces the anticlastic curvature seen by the beam

Quasimosaic crystals

Built at PNPI - Gatchina

Beam direction

Quasi-Mosaic effect (Sumbaev, 1957)

- The crystal is cut parallel to the planes (111).
- An external force induce the main curvature.
- The anticlastic effect produces a secondary curvature
- The anisotropy of the elastic tensor induces a curvature of the crystal planes parallel to the small face.

Crystal size: 0.7 x 30 x 30 mm³
W. Scandale 10

Angular beam profile as a function of the crystal orientation

9mm long Si-crystal deflecting 400GeV protons

Rotation angle (µrad)

The angular profile is the change of beam direction induced by the crystal

The **rotation angle** is angle of the crystal respect to beam direction

The particle density decreases from red to blue

- 1 "amorphous" orientation
- 2 channeling (50 %)
- 3 de-channeling (1 %)
- 4 volume capture (2 %)
- 5 volume reflection (98 %)

Multi-crystals

multiheads crystal (PNPI)

multistrip crystal (IHEP and INFN-Ferrara)

Several consecutive reflections

- enhance the deflection angle
- keep large cross section

W. Scandale 12

5 heads multi-crystals

- Volume reflection angle 53 μrad
- ◆ Efficiency ≥ 90 %

High statistics

Multi-strips

- **5**
- \bullet Volume reflection angle ~100 µrad
- Efficiency ~ 90 %

MST 14 – 400 Gev – R=4.61m

INFN-Ferrara

IHEP

(111) or (110)

Other results of H8RD22

PROTON BEAM (400GeV/c),

- ◆Volume reflection dependence from the curvature of the crystal
- ◆Axial channeling

ELECTRON/POSITRON BEAM (180GeV/c),

- Volume reflection with electrons and positrons
- ◆Radiation emission with e+/e- beams in channeling condition

UA9

The underground experiment in the SPS

Approved by the CERN Research Board of the 3 Sept 2008

Goals:

- Demonstrate high efficiency collimation assisted by bent crystals (loss localization)
- Follow single particle dynamics in crystal-collimation system

CRYSTAL experiment layout Roman Roman Secondary Crystal Pot 1 collimator (TAL) OF.518 QD.519 OF.520 Beam $\mathbf{z}_{ ext{direction}}$ 5186.713 5218.711 5250.708 5182.000 5225.450 5241.052 5244.082 S. Peggs June 4, 2008 Approximately to scale in s[m]

UA9 layout

RD22 tank stage 2: checking of crytal alignment by metal holders the laser beam. 1500 IEC ASS'Y (top Quartz windows: Laser table for crystal alignment SCRAPER VI Axe tonk deam p Beam (multi) axis Crystal Crystal Concerns: Concerns: 2490 · Optimal energy Out-gassing 3400 AlignmentFeed-troughs · RF noise · Feed-troughs

The SPS beam

- Possible energy range from 70 to 270 GeV.
- We selected two energies of interest:
 - 120 GeV, as for the RD22 experiments (reference data in the literature);
 - 270 GeV, as for other planned experiment in the SPS (faster setting-up)

	High energy	unbunched	bunched
RF Voltage [MV]	1.5	0	1.5
Momentum P [GeV/c]	270	120	120
Tune Qx	26.13	26.13	26.13
Tune Qy	26.18	26.18	26.18
Tune Qs	0.0021	0	0.004
normalized emittance (at 1 σ) [mm mrad]	1.5	1.5	1.5
transverse radius (RMS) [mm]	0.67	1	1
momentum spread (RMS) $\Delta p/p$	2 to 3×10 ⁻⁴	2 to 3×10 ⁻⁴	4×10 ⁻⁴
Longitudinal emittance [eV-s]	0.4	≤0.4	0.4

alternative tunes are those selected in RD22 (Qx=26.62, Qy=26.58).

The SPS beam

- Intensity a few 10^{11} up to a few 10^{12} circulating particles.
- Beam either unbunched or bunched in a few tens of bunches.
- Beam lifetime larger than 80 h, determined by the SPS vacuum.
- A halo flux of a few 10^2 to a few 10^4 particles per turn, which can be investigated with the detectors in the roman pots
 - evenly distributed along the revolution period (unbunched beam);
 - or synchronous to the bunch structure (bunched beam).
- Larger fluxes up to a few 10⁵ particles per turn, which should be studied using only the beam loss monitors.

Deflected beam

Expected efficiency

for α =150 μ rad

Plans for 2009

UA9

- Installation in the SPS tunnel: Feb 09
- First run: June 09
- Loss localization experiment: Sept 09
- · Observation of single particles and efficiency measurement: Nov 09

H8RD22

- 400GeV proton microbeam: Oct 09
- 150GeV electro/positron muon beam: Nov 09

Conclusion

- High efficient reflection (and channeling) observed in single pass interaction of high-energy protons with bent crystals (0.5 to 10 mm long)
- Single reflection on a Si bent crystal deflects > 98 % of the incoming beam by an angle 12÷14 µrad
- Very promising for application in crystal collimation
- Multi-reflections on a sequence of aligned crystals to enhance the reflection angle successfully tested in the 2007 and 2008 runs. Efficiency > 90 %.
- Axial channeling also observed (scattering enhancement?)

In 2009 the UA9 test planned in the SPS will provide us with the final word on crystal collimation for future hadron colliders

Recent Publications

- 2006-PhysRevLett_97_144801 Volume Reflection of a Proton Beam in a Bent Crystal
- 2007-NIMB54908 Volume reflection of high-energy protons in short bent crystals
- 2007-PRL98 High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal
- 2008-NIMB55427 Efficiency increase of volume reflection of high-energy protons in a bent crystal with increasing curvature
- 2008-PHYSICAL REVIEW SPECIAL TOPICS ACCELERATORS AND BEAMS 11, 063501 (2008)
 Deflection of 400 GeV/c proton beam with bent silicon crystals at the CERN Super Proton Synchrotron
- 2008-PLB 658 Double volume reflection of a proton beam by a sequence of two bent crystals
- 2008-PRL 101, 164801 (2008) High-Efficiency Deflection of High-Energy Protons through
 Axial Channeling in a Bent Crystal
- 2008-RSI 79 Apparatus to study crystal channeling and volume reflection phenomena at the SPS H8 beamline
- ◆ 2008-SPSC-P-335 **PROPOSAL OF THE CRYSTAL EXPERIMENT**

Acknowledgments

We acknowledge partial support by

- The European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395),
- the INTAS program
- The MIUR 2006028442 project,
- The Russian Foundation for Basic Research grant 06-02-16912,
- The Council of the President of the Russian Federation grant NSh-3057.2006.2,
- The Program "Physics of Elementary Particles and Fundamental Nuclear Physics" of Russian Academy of Sciences.
- INFN: NTA programme