

The grazing function g

S. Peggs (BNL) & V. Previtali (CERN)

With thanks to R.Assmann, A.Drees, R.Fliller, E.Laface, N.Mokhov, G.Robert-Demolaize, W.Scandale, S.Shiraishi, D.Still, A.Valishev.

A "grazing particle" just touches the crystal during simultaneous betatron & synchrotron oscillation extrema.

$$a_x + |\eta| \, a_s = |x_c|$$

The ONLY page of equations

Thus the grazing angle depends linearly on the synchrotron amplitude a_s according to

$$x'_{G} = -\frac{\alpha}{\beta} x_{c} + \operatorname{sgn}(x_{c}) \operatorname{sgn}(\eta) g a_{s}$$
 (15)

where the linear slope of grazing angle with respect to synchrotron amplitude is

$$\frac{dx'_G}{da_s} = \operatorname{sgn}(x_c)\operatorname{sgn}(\eta)g \tag{16}$$

The grazing function g that enters these equations is an optical quantity defined as

$$g \equiv \left(\frac{\alpha}{\beta}\eta + \eta'\right) \tag{17}$$

The grazing function is thus revealed to be just

$$g = \sqrt{\beta} \, \eta_N'$$

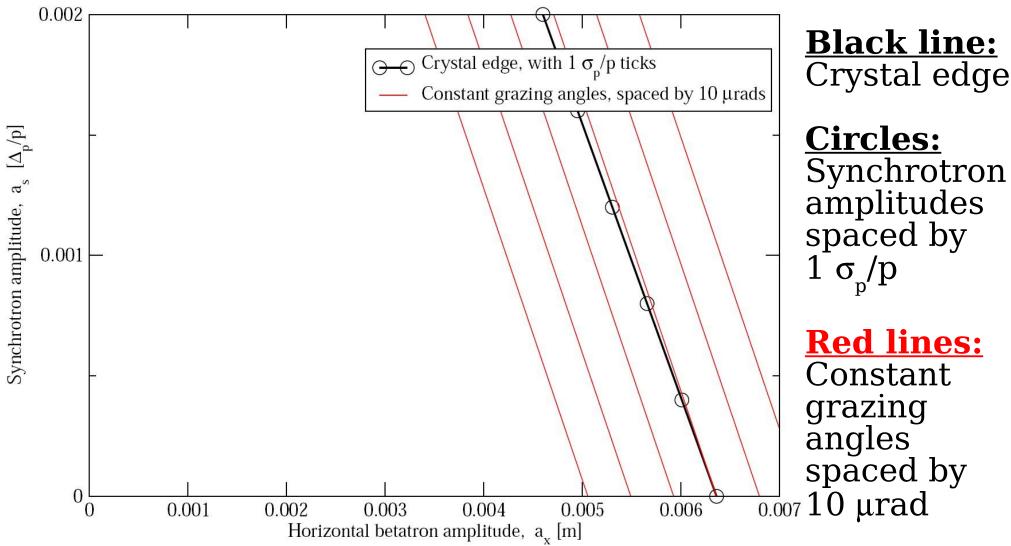
and the rigorous general synchrobetatron condition g = 0 is just

$$\eta_N' = 0$$

More realistic condition on g

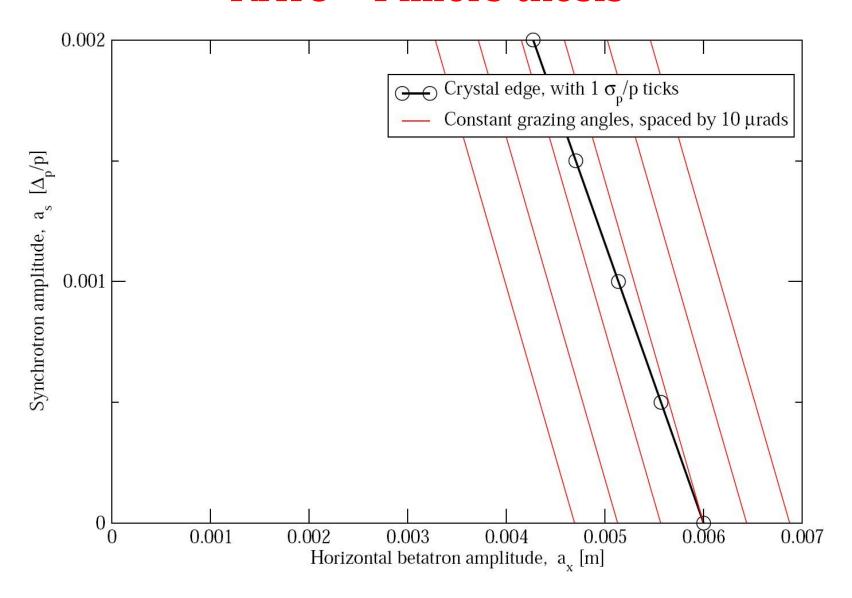
Efficient collimation: the grazing angle must be within the crystal acceptance angle for "all" synchrotron amplitudes.

$$|g| < \frac{\sigma_A'}{n_{max} \left(\sigma_p/p\right)}$$


$$\sigma_A'$$
 [μ rad] \sim 2 channeling at 7 TeV
 \sim 10 channeling at 0.1 TeV
 \sim 100 volume reflection at any energy

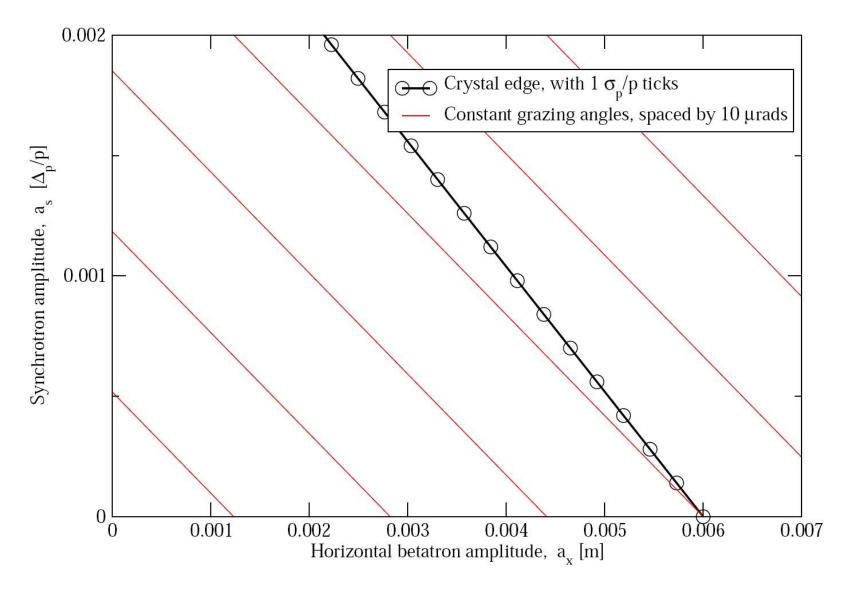
	α	β [m]	η [m]	η' $[10^{-3}]$	g [10^{-3}]	E [TeV]	$\frac{\sigma_p/p}{[10^{-3}]}$	σ'_G [μ rad]
RHIC SPS Tevatron LHC	-26.5 -2.21 -0.425 1.94	1155.0 96.1 67.5 137.6	-0.864 -0.880 1.925 0.559	-16.2 -19.0 15.0 -8.9	3.6 1.2 2.9 -1.0	0.10 0.12 0.98 0.45 7.0	0.50 0.40 0.14 0.31 0.11	1.81 0.48 0.41 0.31 0.11

SPS UA9 expectations



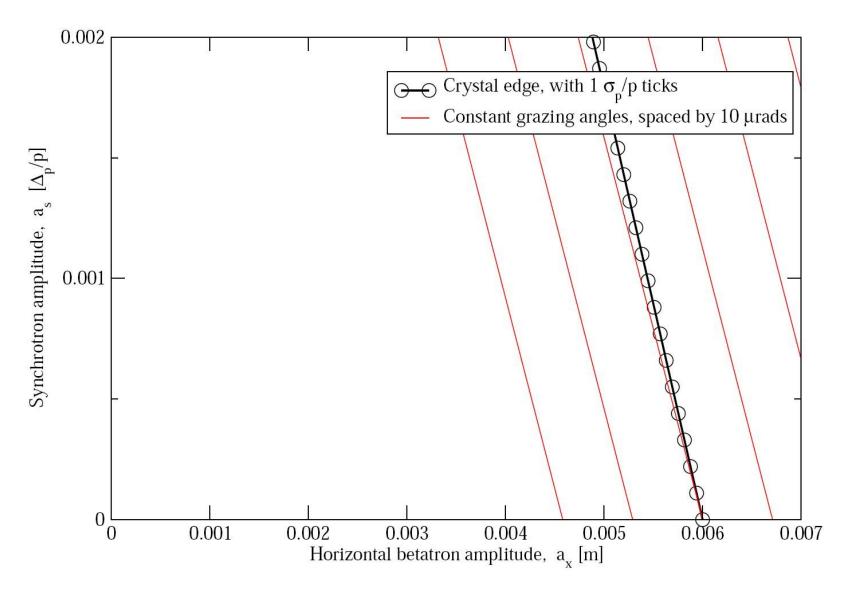
UA9 looks ok: the grazing angle changes by only 0.48 μ rad per σ_p/p , despite large negative dispersion at the crystal.

RHIC – Flillers thesis



Large σ_p/p : grazing angle changes by 5.4 µrad over 3 σ_p/p . Helps explain disappointing performance?

Tevatron T980

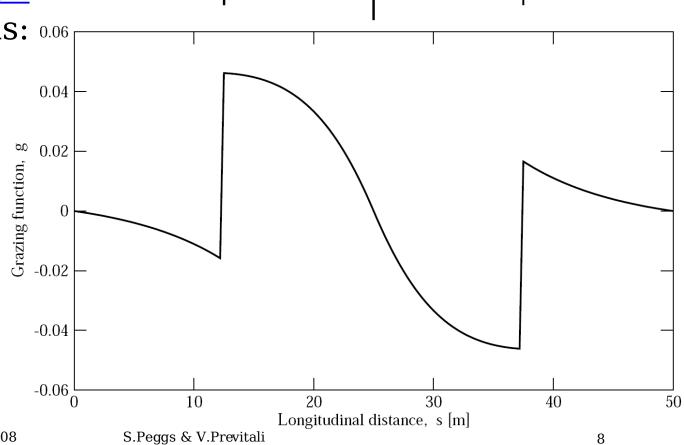


Flattened slopes: grazing angle changes by 0.41 µrad per 3 $\sigma_{_p}/p.$ Measured optics values also available.

LHC

Small σ_p /p, small channeling acceptance: grazing angle changes by only 0.11 (0.31) μ rad per σ_p /p at 7 (0.45) TeV.

How does *q* propagate?



A thin dipole:
$$\Delta g = \left(\Delta \eta' - \frac{\eta \Delta b'}{b}\right) = \Delta \theta$$

A thin quad:
$$\Delta g = \eta \left(\frac{\Delta \eta'}{\eta} - \frac{\Delta b'}{b} \right) = 0$$

A matched FODO cell

thin dipoles & quads: 0.06

A matched FODO cell short dipoles thick quads:

A matched FODO cell long dipoles thick quads:

g is small when the normalized dispersion is almost constant

$$g = \sqrt{\beta} \, \eta_N'$$

0.06 0.04Grazing function, g 0.02 -0.02 -0.04-0.06 | 40 10 50 Longitudinal distance, s [m] 0.06 0.04 Grazing function, g 0.02 -0.02 -0.04-0.06 <u></u> 10 40 50 Longitudinal distance, s [m]

Simple prediction vs numerical testing

where
$$S \equiv \sin \phi/2$$
, $C \equiv \cos \phi/2$

for a matched FODO cell, phase advance per cell ϕ , half cell length L, half cell bend angle θ

In reasonable agreement with numerical testing:

$$g_{max} \approx 0.427 L^0 \theta^1 \tag{51}$$

when the phase advance per full-cell is 90 degrees. There is no dependence on the cell length! A fair rule of thumb is that

$$g_{max} \approx \theta/2$$
 (52)

CAUTION: these best case results assume matched optics.

Conclusions

- 1) The grazing function g parameterizes the rate of change of total angle with synchrotron amplitude.
- 2) A pure optics function, it is related to the slope of the normalized dispersion. Ideal crystal value g = 0
- 3) g should be small enough that "all" synchrotron amplitudes are within the crystal acceptance angle.
- 4) This appears to be reasonable to achieve in practice, especially in VR mode, and at lower energies.
- 5) Place crystal away from betatron & dispersion waves, since they may increase g by an order of magnitude.
- 6) Planning for future crystals should include a grazing function analysis, both in design and in error analysis.

Backup slides