QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Simulations for Crystal (UA9)

V. Previtali CERN & EPFL R. Assmann, S. Redaelli, CERN I. Yazinin, IHEP Crystal Workshop 29.10.08 Fermilab

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Introduction

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

- Crystal collimation might be a way to improve cleaning efficiency.
- Studies in AB/ABP group and the LHC collimation project to assess achievable performance in LHC and analyze SPS & Tevatron tests.
- Use the same state-of-the-art beam simulations as used for the LHC design and SPS beam tests for LHC collimators: direct prediction of performance change with crystals!
- Goal of my PhD!
- Work so far:

QuickTime™ and a TIFF (Uncompressed) decompressor

- Conceptual studies of crystal collimation.
- Work with I. Yazinin on crystal simulation routine (phase space match, amorphous layer, general debugging).
- Implementation of crystal simulation routine into standard LHC tracking tools for collimation (COLLTRACK operational and Sixtrack ongoing).
- Simulations on LHC and SPS with local loss maps and efficiency.
- Discuss SPS simulations today.

SPS Crystal experiment: Layout & Optics

QF.51810: QD.51910: QF52010: Focusing Defocusing Focusing Quadrupole Quadrupole Quadrupole 2.5 Eirst Second
Crystal Roman Roman (Wabsorber
Pot Pot $\overline{2}$ 1.5 $\overline{1}$ 0.5 $\mathbf{0}$ -0.5 -1 -1.5 5180 5220 5240 5200 5160 5260 5280 s coordinate [m]

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> 1 sigma envelope [mm] H dispersion [m] -----phase advance

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SPS experiment

the main elements

• Crystal: Si crystal

QuickTime™ and a TIFF (Uncompressed) decompressor

- Roman Pots:
	- *Detector region*:
	- -3 to 5 Si detector, length 300 μ m
	- transversal window (Steel); length $2x 200 \mu m$
	- *Dead region*, 500 um, length 2x 200 um (Steel)
	- *Border*: 150 µm Al, length 3 cm

Detector region: 664 - 882 µm *Dead region:* $370 \mu m$ *Border region:* 1.16 cm

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Use 0.75 mm Cu to represent Roman Pot scattering

Each kick corresponds an amplitude increase and a phase shift:

- These quantities will determine the particle dynamics after the interaction with the crystal.
- What is the characteristic kick for each process? In theory we know...

Expected Crystal Effects

QuickTime™ and a Times (United) are needed to see this picture.

- Effect of crystal described by physics cross-sections.
- Monte-Carlo simulation based on probabilities.
- Every interaction can be different!

Channeling crystal Probability [a.u.] Probability [a.u.]Probability [a.u.] Probability [a.u.] orientation 100 $-0.00025 -0.0002 -0.00015 -0.0001$ $-5e-05$ 0.0001 0.00015 0.0002 0.00025 $-0.00025 -0.0002 -0.00015 -0.0001$ $-5e-05$ $\mathbf 0$ 5e-05 0.0001 0.00015 0.0002 0.00025 Ω 5e-05 xp-xp₀ [rad] $xp - xp_0$ [rad]

VP 28.10.08

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

100000

Particles of one bunch may have different processes based on their entry condition (offset, angle, energy).

Colltrack limitations

– Only on-momentum tracking (all particles are considered at nominal energy - no chromatic effect, synchrotron oscillation, etc… is included)

Next simulations will be performed in 6D with Sixtrack (crystal routine just implemented)

VP 28.10.08

Importance of 6D effects shown in analytical study: S. Peggs and V. Previtali

Colltrack: Simulation Scenarios

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Different cases presented today (more done):

QuickTime™ and a TIFF (Uncompressed) decompressor

- 1. Perfect crystal (no amorphous layer), no diffusion.
- 2. Perfect crystal, diffusion of 1.2×10^{-4} σ per turn(0.12 μ m/turn).
- 3. Crystal with 0.1 μ m amorphous layer, diffusion of 1.2 \times 10⁻⁴ σ per turn $(0.12 \mu m/t$ urn).
- 4. Crystal with 0.5 μ m amorphous layer, diffusion of 1.2 \times 10⁻⁴ σ per turn $(0.12 \mu m/t$ urn).

For each case crystal tilt varied from -250 to 100 μ rad.

50k halo protons with $\leq 0.015 \sigma$ impact parameter simulated.

Tracked over 250-1000 turns, depending on cleaning time.

VP 28.10.08 Detailed aperture model to locate losses with 10cm spatial resolution.

The diffusion accelerates the halo cleaning (about 500 turns faster, time required for \sim 60 µm diffusion).

Different improvement factors for various crystal regimes.

To be understood and analyzed in more detail.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Local Beam Loss vs Global Efficiency

QuickTime™ and a FF (Uncompressed) decom are needed to see this picture.

- Remember: LHC problem is local loss of protons after collimation regions in super-conducting magnets.
- What matters, are losses in magnets far downstream of collimators, crystals, etc.
- We want to measure beam loss distributions after crystals and compare with predictions for cleaning and collimation for magnets.
- Was done in SPS for LHC prototype collimator in 2004 and 2007.
- Reference paper:
	- "Comparison between measured and simulated beam loss patterns in the CERN SPS." S. Redaelli, G. Arduini, R. Assmann, G. Robert-Demolaize (CERN) . CERN-LHC-PROJECT-REPORT-938.
- Results show power of beam loss measurements (BLM) in the SPS and cross-checking with beam loss simulations (Sixtrack with collimator routines).
- Tracking codes fully qualified by beam tests.

QuickTime™ and a TIFF (Une are needed to see this picture.

SPS Beam Loss Response: Measured and Simulated Full Ring

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Un are needed to see this picture.

SPS Beam Loss Response: Measured and Simulated

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

1.2 km Downstream of Collimator

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SPS Beam Loss Response: Measured and Simulated

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

2.3 km Downstream of Collimator

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Measurement Approach for CRYSTAL.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

- Use the benchmarking method as used for LHC collimators and beam loss simulations in the SPS also for crystal collimation studies.
- Approach:

QuickTime™ and a TIFF (Uncompressed) decompressor

- For each crystal and beam setup simulate the losses around the full SPS ring.
- For every crystal and beam setup measure the losses around the full SPS ring.
- Compare measurement and simulation to demonstrate reduction of beam losses in magnets with a crystal.
- Successful benchmarking in the SPS will then verify predictions of cleaning efficiency with crystals for the LHC (not reported here but existing).
- Use same method also for benchmarking in Tevatron crystal experiments.
- Next slides: Report loss predictions for SPS with crystals.

Where are leaking protons lost? Movie of beam loss vs crystal tilt

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Local inefficiency

Local inefficiency

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SPS loss map - tilt 150 urad

Where are leaking protons lost? Movie of beam loss vs crystal tilt

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Local inefficiency

Local inefficiency

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

SPS loss map - tilt 150 urad

- Case no amorphous layer, **channeling** position
- Losses between crystal and TAL are much lower (=0 with our statistic, 50K particles) if diffusion is activated
- Losses immediately downstream the crystal are higher in case of diffusion

More loss maps

amorphous layer…

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

> Zoom in on the beam loss maps for different values of amorphous layer.

> For channeling position, the presence of an amorphous layer up to 500 nm does not noticeably affect the losses distribution along the ring.

Looking Element by Element

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

- Previous results show SPS loss maps along the accelerator length.
- Simulations allow to consider losses separately for each element in the model.
- Next slides:

QuickTime™ and a TIFF (Uncompressed) decompressor

- Show number of inelastic interactions (losses) at each element integrated over the full length of the element.
- Plot this versus the orientation of the crystal.
- Shows the number of local interactions in the various crystal regimes. Each inelastic interaction induces a particle shower.
- Could be used to analyze local losses for specific magnets in more detail (e.g. including installation of additional BLM's, possibly LHCtype as used for SPS collimator tests).

2) Inelastic interactions in bend MBA52030

QuickTime™ and a TIFF (Uncompressed) decompressor

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Case no amorphous layer, diffusion

are 5) Inelastic interactions in aperture element

Case no amorphous layer, diffusion

Conclusions

QuickTime™ and a FF (Uncompressed) decompressor are needed to see this picture.

- Beam loss maps will provide a unique method to validate collimation simulations and measurements (as shown for SPS tests of LHC collimators).
- This relies on distributed beam loss measurement systems as they exist in SPS and Tevatron.
- The LHC state-of-the-art codes for massive tracking have been adapted to include crystal effects (still being finalized for Sixtrack).
- Detailed loss predictions have been prepared for the SPS all around the ring, including magnet losses. Plan to do the same for the Tevatron.
- Measurements for every crystal orientation can be compared to the predictions.
- Once numerical codes have been verified this way, the crystal collimation predictions for the LHC (not shown here) can be trusted.
- Element by element predictions allow focusing on critical elements, maybe equiping them with additional beam loss monitors.
- Work further progressing by moving to full 6D and improving models.

VP 28.10.08

QuickTime™ and a TIFF (Uncompressed) decompressor