
HEPnOS event selection status

Marc Paterno and Saba Sehrish
14 Jan 2020



Overview of the work

We have created a client application to exercise the HEPnOS event service.
We are using the NOvA neutrino interaction candidate selection application, written to
use MPI through DIY.
This application:

1. Reads some data products for an event (containing multiple slices) from a
hepnos::Event.

2. Transforms the HEPnOS-based data structures into NOvA StandardRecord data
structures.

3. Processes each slice, to determine whether it contains a candidate neutrino interaction.

The slice IDs for all slices containing a candidate are written to the output.
A separate program is used to load the data from HDF5 file(s) into the running
HEPnOS store. We do not collect detailing timing information in this program, because
it is not our main interest. We do have a summary of how long the loading takes.

2/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Remember that paper?

For the planned paper, our goal is to demnostrate the speed and the scalability of the
HEPnOS event store.
We want to study how the performance varies with operational parameters of the
system:

1. size of resources used to serve the data (nodes, ranks per node, . . . )
2. size of client resources (nodes, ranks, . . . )

Our goal in this talk is to show what we have learned thus far, so that this afternoon we
can make concrete plans for how to proceed toward the completed paper.

3/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



What we’re currently measuring
We have instrumented the eventselection program to record timestamps when certain
steps take place in each rank of the DIY program:

1. start of program
2. start of processing a block
3. start of processing an event
4. end of reading data from HEPnOS
5. end of creating StandardRecord objects for the event
6. end of processing an event
7. end of processing a block
8. finish of program

We use this to measure:

1. whole program execution time
2. block-by-block execution time (for each rank); each block processes N events
3. event-by-event execution time (with several subdivisions, noted later)
4/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



First view of performance: small run on local resources

To start to understand the data, we have run on local FNAL resources.
Everything run on grunt3, a 32-core AMD Opteron 6128 machine with 64 GB of RAM.
We ran the HEPnOS daemon with 1 rank.
Client program runs with 30 ranks.
The program executes 244 blocks.
There are 2,439 events and 20,673 slices in the data used for these runs.
The total processing time is 4.98283 seconds.

5/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Block processing

The main part of the eventselection program is processing a series of blocks.
Each block processes some number of events from a given subrun.
We want to limit the number of events in a block to help load balance the program.

6/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Distribution of block processing times

0

10

20

30

0.1 0.2 0.3 0.4 0.5 0.6
Block processing time (s)

co
un

t

Min 1st Qu. Median Mean S.D. 3rd Qu. Max

0.106 0.351 0.378 0.383 0.087 0.417 0.659

7/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Load balance: finish time of each “wave” of blocks, by rank

0

10

20

30

2 3 4 5
Finish time (s)

M
P

I r
an

k

8/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Load balance: time at which each rank has processed its last block

22
8

21
6

13
7
3

17
28
19
29
16
11
26
18
10
5

20
30
1

24
23
12
15
2
9

25
4

27
14

4.5 4.6 4.7 4.8 4.9 5.0
Finish time for rank (s)

M
P

I r
an

k

9/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Looking at event-processing times

Recall that for each event we capture 4 timestamps:
1. before loading data from HEPnOS (start of event)
2. after loading data from HEPnOS (before starting translation to StandardRecord objects)
3. after translation (before NOvA candidate selection)
4. after candidate selection is done

We record the total number of slices in each event.
We record the total number of bytes read from HEPnOS.
We do not record slice-by-slice information; there is just too much of it.

10/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Time for each task in event processing
load

rec
filt

1e−05 1e−04 1e−03 1e−02 1e−01

0

100

200

300

400

0

100

200

300

400

500

0

50

100

150

200

time (s)

co
un

t

11/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Is there a correlation between slow loading and slow filtering?

0.00

0.01

0.02

0.03

0.00 0.02 0.04 0.06
Loading time (s)

F
ilt

er
in

g 
tim

e 
(s

)

12/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Is there a correlation between slow loading and slow filtering?

(10,11] (11,12] (12,21]

(7,8] (8,9] (9,10]

(0,5] (5,6] (6,7]

0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

Loading time (s)

F
ilt

er
in

g 
tim

e 
(s

)

13/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Load time as a function of number of slices

0.00

0.02

0.04

0.06

5 10 15 20
Number of slices in event

T
im

e 
to

 lo
ad

 th
e 

ev
en

t (
s)

14/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Distribution of aggregate read size (we don’t read the whole event)

0

50

100

150

0 10 20 30
Aggreate data read (kB)

co
un

t

Min 1st Qu. Median Mean S.D. 3rd Qu. Max

1.16 10.354 13.594 13.86 4.761 16.922 31.711

15/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Load time as a function of aggregate data size
6

12
18

24
30

5
11

17
23

29

4
10

16
22

28

3
9

15
21

27

2
8

14
20

26

1
7

13
19

25

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

0.00
0.02
0.04
0.06

0.00
0.02
0.04
0.06

0.00
0.02
0.04
0.06

0.00
0.02
0.04
0.06

0.00
0.02
0.04
0.06

Number of kilobytes read

T
im

e 
to

 lo
ad

 th
e 

ev
en

t (
s)

16/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Maybe we’re overwhelming the one daemon rank?

40

50

60

70

80

3.0 3.5 4.0 4.5 5.0
timestamp at end of read (s)

E
ve

nt
 n

um
be

r 
w

ith
in

 r
an

k

factor(rank)

2

4

9

14

15

22

25

27

17/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Load time as a function of time

0.00

0.02

0.04

0.06

2 3 4 5
timestamp at end of read (s)

T
im

e 
to

 lo
ad

 e
ve

nt
 (

s)

18/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



First look at a run with two daemon ranks

0.01

0.02

0.03

2.5 3.0 3.5 4.0 4.5
timestamp at end of read (s)

T
im

e 
to

 lo
ad

 e
ve

nt
 (

s)

19/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Time for each task in event processing with 2 daemon ranks
load

rec
filt

1e−05 1e−04 1e−03 1e−02

0

50

100

150

200

250

0

200

400

600

0

50

100

150

200

time (s)

co
un

t

20/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Comparison of 1- and 2-rank server performance

Min 1st Qu. Median Mean S.D. 3rd Qu. Max server ranks

0.002 0.016 0.019 0.020 0.008 0.022 0.072 1
0.002 0.009 0.011 0.011 0.004 0.014 0.030 2

21/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status



Questions

Are we collecting the right information to be able to properly characterize the
performance we care about?
Do we need more performance tuning before we start running experiments on Theta?
What should be the figure of merit for HEPnOS?

Number of events/second read?
Total bytes/second transferred?
Throughput (slices/second) of whole eventselection program?
Something else?

What should we be varying to characterize scaling?
Is our data set large enough for the studies we want to do?

On Theta, we have files containing ~4.4 million events

Let’s talk about this—and make choices—in the afternoon.

22/22 14 Jan 2020 Paterno, Sehrish | HEPnOS event selection status


