
1

Mochi Update



2

Phil Matthieu Kevin Rob

Pierre Rob Shane

Bob Brad GalenAndrew

George Chuck

Greg Qing

Dana Jerome



Mochi:	What	are	we	trying	to	accomplish?

We’re	trying	to	transform	HPC	data	services	from	a	monoculture	to	an	
ecosystem.
● Redefining	how	teams	design	and	develop	distributed	services	for	use	in	

HPC	systems.
● Providing	a	portable	”programming	model”	for	these	services.
● Providing	a	set	of	core	building	blocks.
● Demonstrating	the	methodology	and	tools	with	DOE	science	use	cases.

We’re	trying	to	foster	a	community	of	service	developers.
● Developing	a	set	of	training	materials	that	will	help	others	employ	the	

tools.
● Making	all	these	building	blocks	available	to	the	larger	community.



Mochi components	and	microservices

What’s	new	in	the	Mochi	approach?
An	ecosystem	of	services	co-existing	and	reusing	functionality

This approach has 
allowed us to 
simultaneously 
pursue multiple 
specialized service 
implementations.

Particle
Simulation

(e.g.	VPIC)
C	code

Machine	Learning
Ensemble

(e.g.	CANDLE)
Python	code

Analysis	of
Experimental	Data

(e.g.	art	Framework)
C++	code

small	writes	&
indexed	queries

caching	large,
write-once	objects

bulk	ingest	&
iterative	access

Applications

Data	access	needs

Custom	service	interfaces
with	native	language	bindings
Mochi services

Instead	of	“one	size	fits	all”,	Mochi data	services	present
tailored	interfaces,	semantics,	and	policies	for	data	access

while	still	leveraging	robust	building	blocks.

DeltaFS FlameStore HEPnOS

Composable	building	blocks



What’s	new	in	the	Mochi	approach?

Object API

Client 
Memory

Object Provider

Application Process

Object Client

Object provider node

Application node

PMDK or 
POSIX

Extent 
Provider

Bake 
Client

DB (e.g., 
LevelDB)

KV Client

KV Provider

KV Provider

Margo

Mercury Argobots
LevelDB Berkeley 

DB
3. Multiple methods of 

programming (C, C++, Python), 
more accessible.

4. Portable RPC communication 
library designed for multi-
service environments

1. Core functionality 
developed as stand-
alone components and 
“microservices”, cleanly 
reusable in different 
configurations and 
products.

2. Modularity eases 
adaptation to new 
hardware technologies.



Scientific	Achievement
A	custom	data	service	for	the	HEP	experiments,	built	to	
accelerate	analysis	on	state-of-the-art	HPC	systems,	
with	initial	focus	on	NOvA neutrino	experiment	data.

Significance	and	Impact
Demonstrates	HEP	data	analysis	harnessing	the	ever-
increasing	power	of	ASCR	(and	other)	supercomputers	
to	extend	the	physics	capability	of	HEP	experiments.	

Research	Details
– First	demonstrations	of	capability	complete,	using	ALCF	Theta	
system	and	approx.	100,000	events	from	NOvA

– HEPnOS data	service	hooks	directly	to	art analysis	tools
– Singularity	used	to	package	HEP	analysis	for	execution	on	
Theta

– Next	steps	focus	on	scaling	to	full	analysis	runs
– HEPnOS event	model	is	amenable	to	use	in	other	HEP	analysis	
workflows	(e.g.,	ICARUS,	DUNE)

Accelerating	HEP	Data	Analysis	on	HPC	Platforms

BAKE SDS-KeyVal

art Analysis

RPC RDMA

PMEM In-memory	KV

C++
API

The	ASCR	Mochi	project	is	researching	methods	for	rapid	
specialization	of	data	services	for	SC	mission	needs.	In	this	case,	
these	tools	are	being	used	to	develop	a	low	latency,	in-system	store	
(HEPnOS)	for	physics	event	data	storage	and	analysis	in	order	to	
accelerate	HEP	analysis	workloads.	First	prototype	targets	a	NOvA
analysis	workflow,	and	BAKE	component	has	not	been	needed	so	
far.

https://xgitlab.cels.anl.gov/sds/HEPnOS/wikis/home	



Some	Status…

• Major	Theta	performance	issue	debugged	and	addressed
• Initial	small-scale	runs	completing
• …

• Paper	repo	in	place,	some	initial	text	and	outline
https://www.overleaf.com/9242663582wmznnpwdbmsh

• Target	SC20?


