Addressing Theoretical Uncertainties: Tuning Update

Stephen Mrenna Fermilab

January 14, 2020

1/11

\star Finish up the bi-level optimization paper

- Automatic adjustment of weights of observables in tuning to identify poor predictions
- ✗ Concrete comparison with ATLAS tune

\star Go through comments in breakout session

What are the uncertainties on the predictions for the Top Mass coming from event generators?

Current method changes some settings for ISR/FSR and uses various CR models.

- \star Is it conservative? liberal?
- ★ Are variations correlated? uncorrelated?

I/we don't know.

- ★ Requires some "expert" knowledge: some parameter combinations are more equal/sensible than others
- ★ Large number of parameters to explore: many combinations

SciDAC Project

Utilize High Performance Computing resources for HEP problems

- ★ Developed parallel workflow for parameter scans at HPC facilities
- ★ Exploit fastMath/MathScience resources at LBL, ANL
- ★ Rational polynomial approximations for building a surrogate function for predictions from fixed number of points in multiple dimensions
- ★ "Smarter" parameter sampling (LHS, etc.)
- ★ "Better" minimization techniques (reduce variance, etc.)

Example: 20-D scan of Pythia parameters for LEP

Instead of Tuning:

Large scale parameter exploration in Top predictions

\star Define suitable observables and pseudo-observables

- Rivet analyses are easiest; also can handle parametrized smearing
- ★ Select 20-ish potentially sensitive Pythia parameters
- ★ Identify insensitive parameters (Saltelli, Global Sensitivity Analysis)

 \star Freeze these: p^* . Opens up more parameter space

- \star Now identify senstive parameters
 - ★ In which observables?
 - ★ Test on other Rivet analyses
- ★ Identify which analyses to perform on current data to further reduce allowed ranges of parameters

Ingredients

\star Observables or POs

- ★ Assumes backgrounds look like signal and are small
- ✗ Current workflow works for Rivet analyses

\star Central prediction for comparisons

- Y Powheg more accurate(?) but additional parameters
- ✓ Pythia (or Pythia tuned to Powheg?) easier to handle
- ✗ not clear: looking for sensitivity, not accuracy
- \star Selection of parameters, runs
- Calculation of variance based on Rational Approximation

Why has this not been done before?

Timing

- ★ Enough data/understanding so that you have to ask tougher questions
- \star Tools/machinery to perform the task
- ★ Should integrate any tools from bi-level optimization that facilitates this task

No technical reason we can't do this now

 Synergy with Matrix-Element SciDAC
Optimal Pythia parameters for complicated W+parton calculations

Figure: Jet transverse momentum distributions in W^+ +jets events. We show a comparison of multi-jet merged simulations where the maximum jet multiplicity, n_{max} , is set to the number of measured jets, N (red), to N + 1(maize), N + 2 (green) and N + 3 (blue). Please review and comment: https://docs.google.com/document/d/ 1elrL4v0d2zT8gEmeMxyN0ds_ 22Xe37W5z0ueNrPERBA/edit?usp=sharing I need a tutorial on the setup of runs on NERSC/ALCF – which allocation, job submission parameters, storage (today?) and someone looking at the initial steps to make sure it is done correctly