
DIY	Block-Parallel	Data	Analysis

Work	was	performed	at	Argonne	and	Lawrence	Berkeley	National	Labs.

[1] Morozov and	Peterka,	Block-Parallel	Data	Analysis	with	DIY2,	LDAV	2016.
[2] Morozov and	Peterka,	Efficient	Delaunay	Tessellation	through	K-D	Tree
Decomposition,	SC16.
[3] Nashed et	al.,	Parallel	Ptychographic Reconstruction,	Optics	Express	2014.

Scientific Achievement

Significance and Impact

Research Details

DIY	is	a	programming	model	and	runtime	for	block-parallel	
analytics	on	DOE	leadership	machines;	all	parallel	operations	and	
communications	are	expressed	in	terms	of	blocks,	not	processors,	
which	enables	the	same	program	to	run	in- and	out-of-core	with	
single	or	multiple	threads.

DIY enabled Delaunay	and	Voronoi tessellation	of	cosmology	dark	
matter	particles	to	128K	processes	and	improved	performance	by	
50X	[2],	and	it	enabled	ptychographic phase	retrieval	of	
synchrotron	X-ray	images	on	128	GPUs	in	real	time	[3];	DIY	won	an	
honorable	mention	paper	at	LDAV	2016	[1].

§ Enabling	VTK-m	by	DIY-ing various	VTK	distributed-memory	filters:	parallel
resampling,	multipart	dataset	redistribution,	and	stream	tracing.

§ Ongoing	preparation	for	exascale:	relaxing	synchronization,	using	deeper
memory	hierarchy,	compatibility	with	many-core	thread	models.

Master

Block execution

Block loading

Assigner

Mapping blocks
to

processes

Decomposer

Comm. links

Decomposition

Communication

Global reduction

Local neighbor

I/O

Independent

Collective

Algorithms

K-d tree

Parallel sort

Data Movement

Analysis Algorithm

Application

OS / Runtime

Components	of	DIY	and	its	place	in	the	software	stack	are	
designed	to	address	the	data	movement	challenge	in	
extreme-scale	data	analysis.

Dmitriy Morozov (LBNL)	&	Tom	Peterka	(ANL)



Scientific	Achievement
Fermilab researchers	developed	two	
HPC	parallel	codes	using	DIY.
- Pythia8	Monte	Carlo	event	generator	

[1]
- Feldman-Cousins	correction	[2]

Significance	and	Impact
DIY	efficiently	utilizes	HPC	
workflows,	resources,	and	HEP	
community	tools.

Research	Details
• Allows	for	extremely	short	turn-around	of	
large	parameter	space	explorations	(e.g.	
generator	tuning)

• Paves	the	way	for	new	and	advanced	
optimization	algorithms,	e.g.	LHC	search	
analyses.

Parallel	Event	Generation	and	Analysis	with	DIY

Scalability:	Top:	strong	scaling	of	Pythia8	DIY	code.	
Bottom:	weak	scaling	of	Feldman-Cousins	DIY	code.

Work	was	performed	at	Argonne	
and	Fermilab under	SciDAC HEP	
on	HPC	Partnership

[1]	Buchanan	et	al.,	JINST	
2020	(in	preparation)	
[2]	Hoche et	al.,	arXiv 2019.
[3]	Sousa	et	al.,	CHEP	2018.	

Event	generator	model	for	
proton-proton	collision:	
Robust	predictions	of	collider	
events	are	needed	to	search	for	
new	physics	effects.	Much	of	the	
dynamics	is	described	by	
tunable	parameters.	The	
calculation	of	event	generator	
predictions	is	expensive,	and	
must	be	done	for	each	choice	of	
parameters.	A	full	detector	
simulation	of	these	calculations	
is	even	more	expensive,	
requiring	parallel	HPC	codes.



IExchange:	Programming

Work	was	performed	at	LBNL	and	ANL

Morozov et	al.,	IExchange:	Generic	Asynchronous	Pattern	for	
Interleaved	Computation	and	Communication,	in	preparation,	2019.	

Compute	
and	

Exchange

Asynchronous
Termination	Detection

Synchronize	and	End

Compute

Exchange
Messages

Synchronous	Global
Computation	of	Total	Work

End

for	(max_rounds)	{
master.foreach(foo);
master.exchange();
all_done =	reduce(local_work);		//	synch.	collective
if	(all_done)
break;

}

master.iexchange(bar);

void	foo()	{
deque_icoming();
compute();
enqueue_outgoing();

}

bool	bar()	{
do	{
dequeue_incoming();
compute();
enqueue_outgoing();

}	while	(fill_incoming());
return	true;

}

Old	Synchronous	Exchange

New	Asynchronous	IExchange



IExchange:	Termination	Detection

Work	was	performed	at	LBNL	and	ANL

Morozov et	al.,	IExchange:	Generic	Asynchronous	Pattern	for	
Interleaved	Computation	and	Communication,	in	preparation,	2019.	

Compute	
and	

Exchange

Asynchronous
Termination	Detection

Synchronize	and	End

Compute

Exchange
Messages

Synchronous	Global
Computation	of	Total	Work

End

Old	Synchronous	Exchange

New	Asynchronous	IExchange

State 0:
local work = 0

State 1:
locally

entered ibarrier

No state:
communicate &

compute

State 2:
everyone entered

ibarrier
Stop

State 0:
communicate &

compute

State 1:
communicate &

compute

Global work > 0

Enter ibarrier

Not all others
entered ibarrier

All others
entered ibarrier

Global
work = 0



Scientific	Achievement
Interleaved	asynchronous	communication	
pattern	for	iterative	computations	in	DIY
- Eliminates	global	synchronization	on	every	iteration
- Easier	to	use:	asynchronous	communication	and	

termination	detection	handled	by	DIY
Significance	and	Impact

Irregular	imbalanced	workloads	can	be	
accelerated	using	IExchange.

Research	Details
• Asynchronous	communication	and	termination	
detection,	interleaved	with	computation

• Handles	non-monotonic	progress	and/or	unknown	
amount	of	global	work.

IExchange:	Asynchronous	Communication	
and	Computation	in	DIY

Scalability:	strong	
scaling	plot	
shows	iexchange
up	3.5X	faster		
and	5.4X	better	
efficiency	than	
exchange	for	
particle	tracing	in	
Nek5000	thermal	
hydraulics	
application.

Work	was	performed	at	LBNL	and	ANL

Morozov et	al.,	IExchange:	Generic	Asynchronous	Pattern	for	
Interleaved	Computation	and	Communication,	in	preparation,	2019.	

Compute	
and	

Exchange

Asynchronous
Termination	Detection

Synchronize	and	End

Compute

Exchange
Messages

Synchronous	Global
Computation	of	Total	Work

End

Old	Synchronous	Exchange

New	Asynchronous	IExchange


