PRISM Structure Scoping Study

Austin Turner

11 June 2020

PRISM Structure Analysis Update Near Site Hall

Design Considerations:

- Be able to move back and forth
- Elevate detector to match beamline path
- Minimize deflection of cryostat membrane (5-7mm)
- Sufficiently transparent for airflow below detector
- Minimize weight of structure for ease of transport/ installation
- Interface with Hilman rollers - optimize for minimum \#

PRISM Structure Analysis Update PRISM Structure

PRISM Structure Analysis Update

Overview

Hilman 200 Tonne capacity unit

PRISM Structure Analysis Update
 Mesh Convergence

PRISM Structure Deformation Mesh Convergence

- Default (300 mm) - 2 x - 4 x - 6 x - 8 x - 10x $\quad 12 \mathrm{x}$ - Linear (Combined)

PRISM Structure Stress Mesh Convergence

- $6 x$
- 8 x

10x

- 12x —— Linear (Combined)

PRISM Structure Analysis Update ANSYS Parameters

Detector Weight Estimate: 900 metric tons
Cryogenic Equipment Mezzanine: ~96 metric tons
Overall Mesh Size: 50 mm
Mesh Around Joints: 15 mm

PRISM Structure Analysis Update

 Joint Reinforcement

Unsupported vs Stiffened Joint

Three Frame Sections

Section Joint

PRISM Structure Analysis Update Detector Rail Separation

Base Width: 240"
Max Deformation: 4.9 mm

- Further analysis needed on torsional effects/ cross brace stiffening

Base Width: 230"
Max Deformation: $\mathbf{3 . 8} \mathbf{~ m m}$

PRISM Structure Analysis Update Number of Hilman Rollers

Considerations:

- Rollers are expensive units ($\$ 1.16 \mathrm{M}$ for $6+$ ctrl system)
- Stress/ deformation increases when number of rollers decreased
- Increasing beam thickness decreases deflection but increases weight
- Compatibility of Hilman rollers with non powered supports -TBD

PRISM Structure Analysis Update Summary

- Identified areas of deformation and stress concentration through finite element scoping study
- Current structure optimized for airflow and low weight
- Need for further analysis to fully define structure

