NA, πA , KA overview

Steve Dytman, Univ. of Pittsburgh ProtoDune Meeting 26 January, 2020

- overview
- existing data (www.nndc.bnl.gov)
- suggested goals for new work
- π A interactions was my PhD thesis and I lead all the FSI work in GENIE

Why FSI matters

- The great confuser hadron mfp ~ fm means 'large' (A dep) changes in both topology and kinematic distributions
 - Pion production followed by pion absorption mimics quasielastic when only muon detected (included in $CC0\pi$ signal)
 - Hadrons change energy/angle through scattering (+additional p,n..)
 - Charged-neutral through charge exchange (+additional p,n..)
- \blacktriangleright Very few studies with ν beams
 - Scintillator detectors good except for high thresholds (few*100 MeV)
 - LAr detectors important for low thresholds
- Most data from other facilities
 - Pion, proton beams from 1970's, 1980's
 - More recent work with neutron beams

overview

- Semi-classical treatments important since 1960's because full quantum calculation not possible (then and now)
 - Many consequences good (simple, flexible) and bad (can't be right)
 - Impressive success describing data, even πA at peak of $\Delta(1232)$
 - Many efforts have been made to add nuclear corrections
- Various versions available (and not)
 - Peanut (FLUKA) has quantum-like corrections
 - Transport (GiBUU) has significant nuclear modifications
 - Salcedo, Oset has density-dependent nuclear mods (π), basis for most event generator models today (NEUT, NuWro, GENIE hN)
 - GEANT, INCL++ have evaporation, coalescence (low energy, hi A)
- New comparison effort started at ECT* by SD, Hayato, Niewczas, Sobczyk, Tena-Vidal, and Volonaiaina to compare FSI models. Many plots in this talk come from that work.

Model overview

Empirical

- GENIE hA (much better agreement with data than expected)
- ► True impulse approx. (IA) nucleon as free good for KE>~500 MeV

Semi-empirical

- Oset πA , Pandharipande/Pieper NN adds medium corrections
 - Both are in GENIE hN and NuWro
- NEUT has new πN tuning (Pinzon et al.)
- ▶ GEANT has many processes, but also many odd approximations

Semi-quantum

- Fluka not available
- ► GiBUU strong, consistent medium effects
- INCL++ solid theory basis (Cugnon), has evaporation, coalescence

GENIE FSI strategy

- For better comparisons, goal always for 2 codes which are compatible with neutrino codes.
 - hN is Intranuclear Cascade (INC, common in generators) and hA is data driven/simplified version (unique)
 - hA is fully reweightable, very fast
 - Both are fit to hadron-nucleus data. hN only recently available to public.
- Advances slow, come when manpower available (Pitt undergrads, Tomek Golan, Madagascar PhD students)
- As of now, includes pions, K⁺, p, and n
- INCL++, GEANT4 will be in v3.2 (early 2020)

Most valuable existing data - σ_{reac}

- Elastic cross section not in semi-classical models (GEANT?)
- Good data for π^+ , p, n (KE>~100 MeV) for C, Fe, and Pb

Comparisons – σ_{reac} with INCL/GEANT4

- GEANT4 is Bertini, same as hA2018 because same stepping
- All 4 roughly equal at this level of comparison
- > Divergences seen for $KE_n < 40$ MeV, INCL is best

Comparisons - Total absorption cross section

- Much harder to measure confusion with charge exchange
- NO data for T_{π} >350 MeV! Huge hole addressed to be in ProtoDUNE?!
- Problems seen even for π^+C (new DUET data included)

Comparisons - double differential xs much more detail

- Energy spectra at each angle, shows mechanisms better
- Compare GENIE with NuWro
 - ▶ pFe \rightarrow pX (left) [Beck], π^+ Ni $\rightarrow \pi^+$ X (right) [Levenson]
 - Quasielastic peak is prominent (hN \rightarrow hN in medium)

Comparisons - double differential xs

Compare GENIE hA/hN/INCL/GEANT for p+C->p+X

IAEA Benchmark of Spallation Models https://www-nds.iaea.org/spallations/

- J.C. David, D.Filges, S. LeRay, G. Mark, N. Otsuka, Y. Yariv
- ► Compare GEANT, PHITS, INCL, CEM... for many p, n interactions H factor - E_{tot}(full energy range)

LADS

> Advanced π^+ Ar/Xe data studying pion absorption

- Sketchy publications and no access to data/results (I tried)
- Table shows accomplishments, challenges in multiplicity meas.
- threshold effect is critical because yield grows at lower energy
- GENIE hA has smooth mult distr, hN has only 2-body abs

	Raw Data	$30{ m MeV}$	Extrapolated
		Threshold	to $0 \mathrm{MeV}$
5p	0.013 ± 0.001	0.04 ± 0.01	0.64 ± 0.13
$4\mathrm{p}$	1.11 ± 0.10	2.0 ± 0.2	$5.1 \pm 1.$
$_{3p}$	19.9 ± 1.2	26.8 ± 2.5	28.4 ± 4.0
3 pn	2.0 ± 0.2	11.9 ± 1.3	33.2 ± 7.4
2p	69.8 ± 4.2	72.9 ± 5.8	43.6 ± 5.2
2p1n	11.9 ± 0.9	62.9 ± 6.6	$75. \pm 10$
2p2n	0.67 ± 0.05	5.6 ± 1.0	$21. \pm 8$
2 pd	9.2 ± 1.0	10.3 ± 1.2	7.9 ± 1.4
$_{\rm pd}$	14.6 ± 2.3	9.8 ± 1.7	4.2 ± 1.0
	5p 4p 3p 2p 2p1n 2p2n 2pd pd	$\begin{array}{c c} {\rm Raw\ Data} \\ \hline 5p & 0.013 \pm 0.001 \\ 4p & 1.11 \pm 0.10 \\ 3p & 19.9 \pm 1.2 \\ 3pn & 2.0 \pm 0.2 \\ 2p & 69.8 \pm 4.2 \\ 2p1n & 11.9 \pm 0.9 \\ 2p2n & 0.67 \pm 0.05 \\ 2pd & 9.2 \pm 1.0 \\ pd & 14.6 \pm 2.3 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ProtoDune analysis

pdn

 3.0 ± 0.4

26 January 2020

 10.6 ± 2.5

 13.8 ± 2.4

More detailed comparison

- Work done at Rutgers (2014), no followup
 - I suspect it is area normalized
- Is anyone interested in working on this? GENIE reweight?

Summary of existing data

- Lots of good data, some great data
 - σ_{reac} , inclusive data, LADS
- Goals back then (as I remember)
 - nuclear structure (NN) through DCEX poor
 - Re-examine low-lying excited states Gamov-Teller isospin excitations
 - nature of absorption, e.g. 2-body vs. 3-body moderate
 - Deltas in nuclei moderate (should go into generators!)
 - reaction mechanism moderate
- Even repeating old data has value
- Biggest holes
 - Pion absorption
 - Details of pA, especially at KE<~100 MeV</p>
 - Any kaon cross section

Thoughts about ProtoDune measurements - π

- Repeating previous data (e.g. DUET) has value
 - LADS data hard to interpret
- Pion absorption still poorly understood
 - Inclusive data proton KE, angle (neutrons?)
 - Correlation among protons
 - Missing energy when full final state detected
 - Careful multiplicity measurement

Thoughts about ProtoDune measurements - p

- Extension of previous data is easy
- Proton-nucleus response still poorly understood
 - Inclusive data proton KE, angle (neutrons?)
 - Missing energy when full final state detected
 - Careful multiplicity measurement
 - No existing calculation gets it right

Conclusions

- Existing models in GENIE, GEANT, NuWro very similar
 - Only different for $\Delta \pi$, low energy nucleons
- Understanding of πA and pA data definitely incomplete in previous era
 - Models like INCL++ have improved understanding
- Definitely room for new data ProtoDUNE can contribute significantly
 - π abs, kaons, nucleon spallation
 - Good statistics, full error treatment will be important
 - Challenge- show me how GENIE is wrong and help me fix it!

