ProtoDUNE detector uncertainty brainstorming

Kendall Mahn (MSU)

ProtoDUNE Analysis Workshop Jan 26th, 2020

Apologies I could not attend and discuss in person.

Thank you for this chance to discuss these topics!

How do we approach systematic uncertainties?

1. What are the expected physics effects in detector we need to develop systematic uncertainty estimates for?

2. What discrepancies do we see in ProtoDUNE data which may affect the analysis?

How do we approach systematic uncertainties?

1. What are the expected physics effects in detector we need to develop systematic uncertainty estimates for?

2. What discrepancies do we see in ProtoDUNE data which may affect the analysis?

Not this time: How we (technically) propagate effects

Today: Attempt to summarize what is known now. Please correct/add ideas!

What is our goal for the ProtoDUNE detector model (and uncertainties?)

MicroBooNE: estimate and correct for average effects (nice paper here: <u>https://arxiv.org/abs/1907.11736</u>)

Possible targets:

- 1. Develop tools to investigate individual effects?
- 2. Look for time dependant/spatial defendant issues
- 3. Closure test with charged particle beam

Explicitly not 'perfect' uncertainties for first paper but lay groundwork for improvements

Possible physics effects in LArTPCs

Charge & light response

- t0 offset
- t0 resolution
- light yield
- timing response
- Recombination
- Drift velocity
- Electron diffusion
- Electron lifetime
- Ionization energy
- E-field
- noise
- gain
- crosstalk
- Electronics transfer function

- ADC linearity (integral & differential)
- wire positions
- wire field response
- APA rotation
- APA
 - displacement
- APA planarity
- CPA rotation
- CPA planarity
- CPA displacement

What are the size of mis-alignments?

Predicted variations	Deflection	
Tolerances as built (warm, x)	3mm base	
Cool down in x	7mm	
Cool down in y	36mm	
Cool down in z	180mm over entire volume, may have uneven spacing between APA gaps (~6.5mm)	
Bowing, deflection of CPA or APA structure	1cm tolerance for CPA	

CPA tilt (crumpled curtain) of 2cm in x is also possible

(Tom Junk)

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Need Tracks With + and - Angles

Need positive Δx or positive Δz to fix this track (really a combination)

Need positive Δx or negative Δz to fix this track (really a combination)

Measurements of alignment

Distortions seen near APA boundary. More apparent for steep tracks. Gap in arrival times of charge for steep tracks. Some charge appears to be missing.

• Covariance: alignment of 'straight' tracks depends on E field and in-situ effects.

Alignment strategy for PD measurement

- Avoid boundaries for FV? look at statistics for measurement
- Correct E field (maybe difficult except in fully charged state?)
- Update alignment to be further away from boundary (and accept increased uncertainties)

Ideas?

Example: E field variation impact on analysis

 A 4-5% E field distortion in a ~1m³ region (field cage resistor failure, not observed)

Example: E field variation impact on analysis

 An electron starting at the star, will experience a distortion in measured position and/or charge

Example: E field variation impact on analysis

A 4-5% E field distortion creates:

- 1-2% bias in dQ (energy scale)
- and also a ~2cm effect in the position (dx, and FV)

How calibration? E field

 Space charge effect (SCE) map in ProtoDUNE using t0-tagged tracks - once per hour

Unknowns in Ar(39) induced space charge, fluid flow model, ion motility, and detector surface charging

M. Mooney- DUNE May 2019 collaboration meeting

How calibration? E field

 Comparison of 1 GeV/c stopping protons in data and MC with updated SCE maps:

	Data Set	Z [cm]
MC	Prev. MCC12 SCE Cali.	3.8 (0.2)
	New MCC12 after SCE Cali.	-0.1 (0.3)
	New MCC12 before SCE Cali.	29.3 (0.6)
Data	Prev. version of SCE Cali	6.7 (0.6)
	New version after SCE Cali.	4.8 (0.6)
	New version before SCE Cali.	33.0 (0.7)

H-Y. Liao, DRA July 10 2019

Residual 5cm offset; "Time dependance"?

E field strategy for PD measurement

- Can include size of discrepancy as an uncertainty, but helpful if we can understand what still could be incomplete
 - Additional checks for time dependance?
 - Document where at; what else in 'chain' needs to be reconsidered?

Ideas?

Electron lifetime (purity)

Electron lifetime affects dE/dx

$$\frac{dE}{dx} = \frac{dQ}{dx} \times W \times R(\vec{E}) \times \exp^{t/\tau} \times D \times C$$

W=ionization energy in LAr (nb: probably depends on E) R(E)=Recombination (explicit E dependence) D=Diffusion C="electronics calibration" (probably also includes other things) $exp(t/\tau)$ =lifetime correction

J. Klein, docdb 14926

Electron lifetime (purity)

Purity monitors indicate different electron lifetime at different heights in detector

Electron lifetime (purity) strategy

- Purity monitors may need cross calibration (won't happen for this first PD result)
- TPC estimates of lifetime are sensitive to ... SCE and other non-uniformities

Electron lifetime (purity) strategy

- Purity monitors may need cross calibration (won't happen for this first PD result)
- TPC estimates of lifetime are sensitive to ... SCE and other non-uniformities
- First: propagate this effect. How much do we care for beam events in a (more limited region of the detector)?
- Second, test some of the assumption. PD can afford careful cosmic selections (e.g. OK to average over drift distance?) Iteration on TPC estimates?

Diffusion

Consider both longitudinal and transverse diffusion

$$\frac{dE}{dx} = \frac{dQ}{dx} \times W \times R(\vec{E}) \times \exp^{t/\tau} \times D \times C$$

W=ionization energy in LAr (nb: probably depends on E) R(E)=Recombination (explicit E dependence) D=Diffusion C="electronics calibration" (probably also includes other things) $exp(t/\tau)$ =lifetime correction

J. Klein, docdb 14926

Diffusion

Gaus fit mean RMS square vs X coordinate

Improved simulation is closer to shape

Diffusion

- Plan to use small angle CRT tagged tracks to measure longitudinal component
 - May need to iterate on SCE as well?
- Next step: propagate effect?

Additional effects

- Wire response, gain, cross talk and electronics: pulser + cosmics ala uB - anything of concern here to iterate on?
- t0, light yield, TPC-light response: Beam signal is 'known' - not so critical here?
- **Recombination:** Model indicates some angular dependance *propagate uncertainties and compare to other effects*

Ideas? Missing big items?

Aside on reconstruction

- 1. Run dedicated changes to detector model through reconstruction to test impact
- 2. Estimate entire impact with thoughtfully chosen data vs. MC comparisons

This talk: Discussing what effects to prepare (1) Actual plan in collaboration with reco groups

Summary

- Measurements using charged particle beam will need an estimate of detector model uncertainties
- Challege: detector model is highly convolved, will need to separate effects and test model in entirety
- One big contribution ProtoDUNE can make is to quantify disagreements (and test specific hypotheses)
 - Enabled by charged particle beam
 - Indications of some effects which have spatial and/ or temporal effects

Backup slides

Calibration strategy

Calibration parameters & Corrections

Charge & light response

- t0 offset
- t0 resolution
- light yield
- timing response
- Recombination
- Drift velocity
- Electron diffusion
- Electron lifetime
- Ionization energy
- E-field
- noise
- gain
- crosstalk
- Electronics transfer function

- ADC linearity (integral &
 - differential)
 - wire positions •
 - wire field response
 - APA rotation
 - APA
 - displacement
 - APA planarity
 - CPA rotation
 - CPA planarity
 - CPA

displacement

Systematics

- Energy bias
 - Position bias •
 - Energy
- Position
 - resolution

Efficiencies

particle ID

- noise
 - removal
 - reconstruction

Particle responses

High level quantities

- Charged hadrons
- neutrons
- low energy • muons
- external
 - measurements

Standard Candles

- Michel electrons
- neutral pions
- external •
 - measurements

resolution

System	Primary Usage
Existing Sources	Broad range of measurements
μ , predominantly from cosmic ray	Position (partial), angle (partial), electron lifetime, wire response, dE/dx calibration etc.
Decay electrons, π^0 from beam, cosmic, atm ν	Test of electromagnetic response model
³⁹ Ar beta decays	electron lifetime (x,y,z,t), diffusion, wire response
External Measurements	Tests of detector model, techniques and systems
ArgoNeuT [<u>27]</u> , ICARUS [<u>28, 58, 59]</u> , Mi- croBooNE	Model parameters (e.g., recombination, diffusion)
DUNE 35 ton prototype [60]	Alignment and t0 techniques
ArgonTUBE [<u>61</u>], MicroBooNE [<u>62</u>], SBND, ICARUS [<u>63</u>], ProtoDUNE [<u>64</u>]	Test of systems (e.g., Laser)
ArgoNeuT [<u>65</u>], MicroBooNE [<u>66</u> , <u>67</u> , <u>68</u> , <u>57</u> , <u>69</u> , <u>27</u>], ICARUS [<u>70</u> , <u>71</u> , <u>72</u>], Proto- DUNE	Test of calibration techniques and detector model (e.g., electron lifetime, Michel electrons, ³⁹ Ar beta decays)
ProtoDUNE, LArIAT [73], CAPTAIN [74]	Test of particle response models and fluid flow models
LArTPC test stands [<u>75</u> , <u>76</u> , <u>77</u> , <u>29</u>]	Light and LAr properties; signal processing techniques
Monitoring Systems	Operation, Commissioning and Monitoring
Purity monitors	Electron lifetime
Photon detection monitoring System	photon detection system (PDS) response
Thermometers	Temperature, velocity; test of fluid flow model
Charge injection	Electronics response

Roadmap: calibrating dx

- Measurements of alignment are sensitive to E field (T. Junk talk)
- Laser system measures displacement maps (E field and drift velocity (T))

Roadmap: calibrating dE

Roadmap: calibrating dE

Roadmap: calibrating dE

What are the size of E field effect?

Systematic	E field distortion	uncertainty on distortion
field cage resistor failure	4-5% (dQ and dx)	known
Ar(39) SP	0.1%	other radiological, fluid model
Ar(39) DP	1%	other radiological, fluid model, ion feedback
CPA tilt (crumple mode), 1-2cm deflection in x, (Also CPA/APA bowing)	1-2%	known assuming deflection

Goal: measure E field to 1% (confirm no non-uniformities at 1% level, or correct them)