Proton Analysis

Measuring proton-argon cross section

Heng-Ye Liao ProtoDUNE Analysis Workshop Jan 26, 2020

Outline

- Proton-Argon cross-section
- Reconstruction

 Algorithms for vertex recognition
 Proton kinetic energy recognition
- Reconstructed cross section (MC)

Motivation

R. F. Carlson, "Proton-nucleus total reaction* cross sections and total cross sections up to 1 GeV", Atomic data and nuclear data tables 63, 93-116 (1996)

- Motivations of proton-argon cross section (XS)
 - Hardly find any proton-argon measurement in our energy region (~400 MeV - ~6.2 GeV)[†]
 - Predictions come from interpolation between heavier and lighter nuclei
 - Validate nuclear structure models (important input for study final state interactions!)

- N^{interacting}/N^{incident}: "Profile" of cross section
- Scaling factor (S_f := M_a/d·L·N_a) : constant N^{incident}/N^{interacting} : Number of incident/interacting protons N_a: Avogadro's number M_a: Atomic mass of argon d/L: Density/thickness of argon target

Thin Slice Method

- The thin slice method was developed by the LArIAT experiment
- Use the granularity of LArTPC
 - → Treat wire-to-wire spacing as a series of "thin-slab" targets.
 Each thin-slab is an independent measurement.
- Cross section

$$XS(KE) = S_{f} \cdot \frac{N(KE)^{interacting}}{N(KE)^{incident}}$$

 * S_f ~ 100 barn in our experiment (Argon target & slab thickness~0.5 cm)

Proton Kinetic Energy

MC Setup

- MC setup for the XS study
 [1] Generate the proton beam close to the TPC front face
 - Incident proton beam: P=1 GeV/c; σP=0.05 GeV/c
 - $(\Theta_{xz}, \Theta_{yz})=(0^{\circ}, 0^{\circ}) \& (x_0, y_0, z_0)=(-80, 420, -10) \text{ cm}$
 - 50,000 events generated
 - Electron lifetime: 3 ms
 - Only the truth info, no reconstruction
 - [2] Apply the thin slice method to derive the proton-argon XS (collection plane only)

Proton Kinetic-Energy Distributions (MC)

Proton-Ar Cross Sections (MC Truth)

Geant4 Cross Sections (G4HadStudies)

- Proof-of-principle of the thin slice method
 - Use a stand-alone Gean4 application to test if the method works
 - \rightarrow G4HadStudies* (Developed by Hans Wenzel)
 - To verify the cross section result from the implemented LArSoft module

*Github link: https://github.com/hanswenzel/G4HadStudies

9

Cross Sections - Comparison

*Geant4 versions: LArSoft: 10.3 <> G4Had: 10.4

10

Kinetic Energy Reconstruction

• Definition of reconstructed kinetic energy:

$$KE = KE_{FF} - \sum_{j} \Delta E_{j} = KE_{FF} - \sum_{j} \frac{dE_{j}}{dx_{j}} dx_{j}$$

+ KE_{FF} : KE at front face of TPC/ ΔE_{j} : Energy loss at each step

• Interaction vertex recognition is a critical part of the XS analysis

Vertex Reconstruction

- Vertex reconstruction using Pandora & convolutional neutral network (CNN)
- Metric of vertex reconstruction: $\Delta r := Distance$ between true vertex and reco vertex

- Pandora & CNN vertex identification:
 - Pandora: Assume reconstructed primary track end has interaction
 - CNN: Choose the highest CNN score as interaction vertex (elastic / inelastic score)
 - p.s. Sometimes the beginning of track gets a higher score, skipping the scores of first few wires (≥3 cm in Z) for the entire analysis

CNN for Vertex Finding

• Basic structure of CNN

1. Convolution layer
(extract feature of
input image)**2. Pooling layer**
(dimensionality
reduction, prevent
over-fitting)

- 3. Fully-connected layer (dense layer) (Output result)
- Modifying the current existing network of finding neutrino vertices original developed by Robert Sulej and Dorota Stefan
- Give each hit in a track the scores of elastic and inelastic scattering \rightarrow The initial idea is triggered by Leigh
- Structure of Convolutional Neural Network
 - → Tingjun and Aidan made major contribution for building the framework

- Network training not using the entire image but using patches instead
- Advantages of using patches: Save memory, save time, and make the training possible

Training Sample & Procedure

• Training sample: Single proton MC, SCE OFF

[Only collection plane Images]

Loss Function

- Loss function (brief description): A metric to measure "distance" between the ground truth and the network outputs (the lower, the better)
- Loss function of use: Categorical cross-entropy

Epoch: the process of updating network parameters after forward+backward propagations

Elastic/Inelastic scattering

For the XS study, we only care about where the interaction takes place

 → Looking at the first interaction vertex and see how well we can identify it

 $\int_{C} \Delta r < 5 \text{ cm} : \text{good reco}$ $\Delta r \ge 5 \text{ cm} : \text{bad reco}$

Vertex Recognition Efficiency

• How well can we identify the interaction vertex?

Angle Calculation

- Angle calculation for true interaction vertices:
 - Use the hits before and after the true interaction vertices
 - Definition of angle:

Efficiency v.s. Θ [Elastic Scattering]

KE_{Reco} ≠ **KE**_{True}: **Overlapping Tracks**

KE_{Reco} ≠ **KE**_{True}: **Daughter Particle**

Dark red: True proton track

Inelastic Scattering

- Data sample (MC SCE OFF): PDSPProd2_MC_1GeV_reco_sce_off
- Remove over overlapping tracks & tracks with high dE/dx hits (> 30 MeV/cm)
- Event selection cuts of inelastic XS
 - Assume Pandora track end has interaction
 - Track length cut (<0.9 track length/CSDA)

Reco. Inelastic XS (MC SCE OFF)

Summary & Outlook

- MC-based study on proton-argon cross section
- Applied thin slice method to Monte Carlo simulation
- Pandora reconstruction performance for 1 GeV/c protons
 - Good elastic: Θ>40°
 - Good inelastic: 67% & good elastic: 14%
- Applied convolution neural network to identify interaction vertex -Improvement on elastic & inelastic scattering → Good inelastic: 75% & good elastic: 31%
- Issues of reconstructed proton kinetic energy
 - Vertex identification
 - Overlapping tracks/daughter particles
- First result of reconstructed inelastic XS (MC, SCE OFF)

<u>Next</u>

- Improve reco inelastic XS
- Improve vertex recognition using CNN

Backup

Literature Survey on Proton XS

#	Title of Paper	Author(s)	Journal
1	Measurements of the proton total reaction cross section for light nuclei between 20 and 48 MeV	McGill, W.F. et al.	Phys.Rev. C10 (1974), p2237-2246
2	Proton Total Reaction Cross Sections in the 10-20-MeV Range: Calcium-40 and Carbon-12	J.F. Dicello, G. Igo	Phys.Rev.C2 (1970), p488-499
3	Reaction cross sections for protons on C-12, Ca-40, Zr-90 and Pb-208 at energies between 80-MeV and 180-MeV \ensuremath{NeV}	A. Auce, A. Ingemarsson et al.	Phys.Rev.C71 (2005) , p: 064606
4	Reaction cross sections for protons in the energy range 220-570 MeV	P.U.Renberg, D.F.Measday et al.	Nuclear Physics Al83 (1972) 81-104
5	Proton-nucleus total reaction cross sections and total cross sections up to 1 GeV	R. F. Carlson	Atomic data and nuclear data tables 63,93 – 116 (1996)
6	Proton-argon elastic scattering at 9.8MeV	T. HonJeong, L. Johnston et al.	Nuclear and Instruments and methods volume 28, Aug. 1964, 325-329
7	Total Reaction Cross-Section Measurements With 60 MeV Protons	J. J. H Menet, E. E. Gross et al.	Phys. Rev. Lett. 22, 1128 – Published 26 May 1969
8	Cross sections for reactions with 593 and 540 MeV protons in aluminium, arsenic, bromine, rubidium and yttrium	A. Grütter	The International Journal of Applied Radiation and Isotopes, volume 33, Issue 9, September 1982, 725-732
9	Reactions of Protons with Ni58 and Ni60	Sheldon Kaufman	Phys. Rev. 117, 1532 – Published 15 March 1960
10	Reaction Cross Sections for 30- to 60-MeV Protons on Various Elements: Comparison of Theoretical Results with Experiment	H. W. Bertini	Phys. Rev. C 5, 2118 – Published 1 June 1972
11	Proton-nucleus total crosssections in the intermediate energy range*(100-2200 MeV)	L. Ray	Physical Review C, 1979 - APS
12	Nuclear reactions of tantalum with 5.7-Gev protons	J. R. Grover	Physical Review, 1962 - APS
13	A study of proton total reaction cross sections for several medium-mass nuclei between 20 and 48 MeV	R. H. McCamis, et al	Canadian Journal of Physics, 1986, Vol. 64, No. 6 : pp. 685-691
14	A Direct Measurement of the Proton Total Reaction Cross Section for Copper at 9.3 Mev	G. W. Greenlees and O. N. Jarvis	Proceedings of the Physical Society, 1961
15	Energy dependence of proton-nucleus reaction cross sections	A. Ingemarsson and M. Lantz	PHYSICAL REVIEW C 72, 064615 (2005)
16	Total cross section measurements with $\pi-$, $\Sigma-$ and protons on nuclei and nucleons around 600 GeV/c	SELEX Collaboration	Nuclear Physics B Volume 579, Issues 1–2, 17 July 2000, Pages 277-312
17	Measuring system of proton total reaction cross-sections at tandem energy region	Nokumura, et al	Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

XS: Geant4 Versions

Version 10.4

(Figure credit: Hans Wenzel)

Version 10.5 (latest version*)

- Geant4 version matters
- Discrepancy in the low energy region
- Provide a validation of Geant4 models using our data!

Geant4 10.4 & 10.5: Model Comparison

10.5

10.4

Process: <i>hadElastic</i> Model: hElasticCHIPS: 0 eV - 100 TeV Cr_sctns: Barashenkov-Glauber: 0 eV - 100 TeV	Process: <i>hadElastic</i> Model: hElasticCHIPS: 0 eV - 100 TeV Cr_sctns: ChipsProtonElasticXS: 0 eV - 100 TeV Cr_sctns: GheishaElastic: 0 eV - 100 TeV
Process: <i>protonInelastic</i> Model: FTFP: 3 GeV - 100 TeV Model: BertiniCascade: 0 eV - 12 GeV Cr_sctns: Barashenkov-Glauber: 0 eV - 100 TeV	Process: <i>protonInelastic</i> Model: FTFP: 3 GeV - 100 TeV Model: BertiniCascade: 0 eV - 12 GeV Cr_sctns: Barashenkov-Glauber: 0 eV - 100 TeV Cr_sctns: Gheishalnelastic: 0 eV - 100 TeV

Credit: Hans Wenzel

 According to the release notes, there were a lot of changes to the cross sections between 10.4 and 10.5. (see "Hadronic Physics" & "Physics Lists" in: http://geant4-data.web.cern.ch/geant4data/ReleaseNotes/ReleaseNotes4.10.5.html)

*Note. Unlike the EM physics in Geant4, 1 process has 1 model and 1 cross section, the Hadronicphysics in Geant4 has many possible models, cross sections (Cr_sctns).

Δr Distributions-Inelastic Scattering

Ar Distributions – Elastic Scattering

• CNN peaking at \sim 1.4 cm in Δ r

Δr v.s. Θ [Elastic Scattering]

• Color code in the plots: Fraction of remaining KE before interaction vertex

$$f^{RE} = 1 - \frac{\sum_{j=1}^{vertex} \Delta E_j}{KE^{ff}}$$
 ΔE_j : Energy deposition of each hit

Position Dependency [Elastic]

• If the interaction vertex happens in the beginning of track (~< 20 cm) $_{\rightarrow}$ Not easy to identify

Position Dependency [Inelastic]

- More uniform in $\Delta r v.s. Z_{true}^{vtx}$
- Better vertex identification for both Pandora and CNN