

Pion-Nucleus Interactions

Libo Jiang for pion analysis group

Outline

- Introduction to Pion Analysis Group
- Physics Interaction Simulation
- Hadronic Scattering Simulation in GEANT4
- Opening questions of nuclear effects and Previous experimental results
- Particle Identifications Strategy in protoDUNE
- Data vs MC of selected pion absorption processes
- Research Plan & Summary

Pion Analysis Group

Michigan State University

Jake Calcutt

Pion Absorption+cex Cross
 Section

Supervisor: Kendal Mahn

University of Bern / CERN

Francesca Stocker

- Pion Absorption Cross Section

Virginia Tech Group Libo Jiang

- Particle identification
- Nuclear Effect

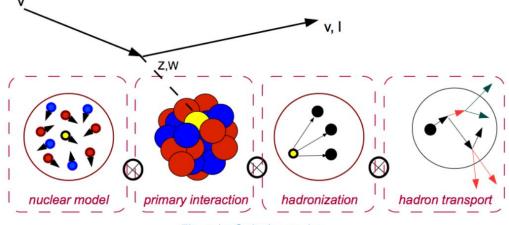
Supervisor: Camillo Mariani (VT)

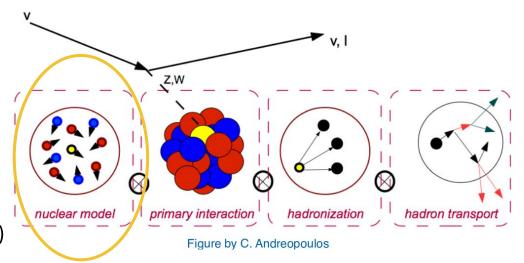
FNAL: Tingjun Yang(FNAL)

Supervisor: Stefania Bordoni (MSU & CERN)

Physics Process Simulation

• Simulation of neutrino nucleus interaction

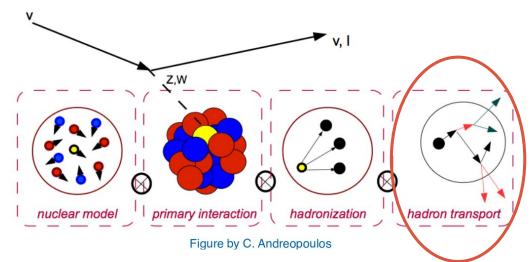



Figure by C. Andreopoulos

• Hadron nucleus scattering is treated in similar way

Physics Process Simulation

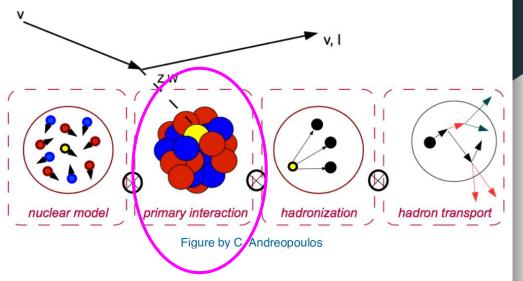
Nuclear Model


- Describe the nucleon states in nucleus
 - momentum(Local Fermi Gas Model: the fermi energy is calculated in a local density approximation)
 - Binding/removing energy(Kummer mass formula)
 - Correlation between nucleons
 - Initialization: fixes the nuclear radius and momentum according to the Fermi Gas model and atom number

Physics Process Simulation

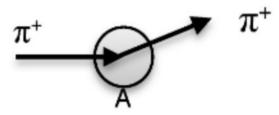
Hadron Transportation

- (Classic) Intra Nuclear Cascade(INC) Model
 - The spatial point is selected uniformly over the projected area of the nucleus
 - Free particle-particle cross sections and region dependent nucleon densities are used to select the path length for the projectile particle



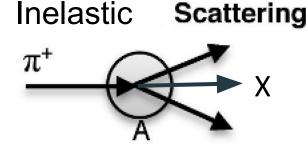
- Bertini nuclear model
 - Relativistic kinematics is applied through out the cascade and the cascade is stopped when all the particles which can escape the nucleus have done so
 - Pauli exclusion principle is applied

Ref: A.S. *Iljinov, M.V. KazarnovskyandE.Ya. Paryev,Intermediate-energyNuclearPhysics,CRCPress, BocaRaton,Florida(USA).(1994).*

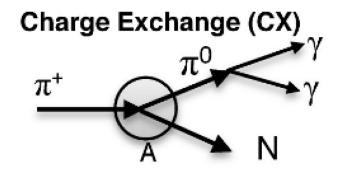

Nuclear Model in GEANT4

- Cross Section Interaction Probability
 - No cross section model totally independent from experiment
 - Some parameters come from tuning against experimental data
 - Geant 4 sample the angular distribution of final state particles in pion absorption according to experimental data
 - Need to be tested by comparing with experimental result

- Total calculated from attenuation of initial beam
- Elastic Scattering
 - Nucleus stays intact
- Inelastic Scattering
 - Nucleus in excited state /broken
- Charge Exchange
 - Single Charge Exchange ($\pi^+ \rightarrow \pi^0$)

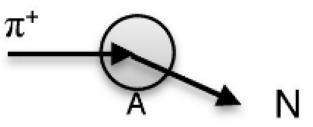

Elastic Scattering

sub-GeV region (Ref: arxiv 1611.05612)


- Double Charge Exchange $(\pi^+ > \pi^-)$ Need to distinguish π^+ and π^- difficult for LArTPC Dominant pion-nucleus interactions in
- Absorption
 - No pions in the final state need to distinguish pions from nucleons
 - Subtraction of other processes

- Total calculated from attenuation of initial beam
- Elastic Scattering
 - Nucleus stays intact
- Inelastic Scattering
 - \circ Nucleus in excited state /broken
- Charge Exchange
 - Single Charge Exchange ($\pi^+ \rightarrow \pi^0$)

- Double Charge Exchange $(\pi^+ > \pi^-)$ Need to distinguish π^+ and π^- difficult for LArTPC Dominant pion-nucleus interactions in
- Absorption
 - *sub-GeV region (Ref: arxiv 1611.05612)* • No pions in the final state - need to distinguish pions from nucleons
 - Subtraction of other processes


- Total calculated from attenuation of initial beam
- Elastic Scattering
 - Nucleus stays intact
- Inelastic Scattering
 - Nucleus in excited state /broken
- Charge Exchange
 - Single Charge Exchange ($\pi^+ \rightarrow \pi^0$)
 - Double Charge Exchange $(\pi^+ > \pi^-)$ Need to distinguish π^+ and π^- difficult for LArTPC
- Absorption
 - No pions in the final state need to distinguish pions from nucleons
 - Subtraction of other processes

Dominant pion-nucleus interactions in sub-GeV region (Ref: arxiv 1611.05612)

- Total calculated from attenuation of initial beam
- Elastic Scattering
 - Nucleus stays intact
- Inelastic Scattering
 - Nucleus in excited state /broken
- Charge Exchange
 - Single Charge Exchange ($\pi^+ \rightarrow \pi^0$)
 - Double Charge Exchange $(\pi^+ > \pi^-)$ Need to distinguish π^+ and π^- difficult for LArTPC
- Absorption
 - No pions in the final state need to distinguish pions from nucleons
 - Subtraction of other processes

Absorption (ABS)

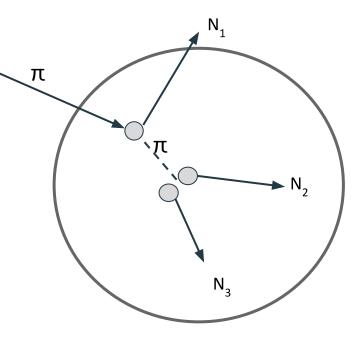
Dominant pion-nucleus interactions in sub-GeV region (Ref: arxiv 1611.05612)

Pion Absorption Reaction

- Pion Absorption:
 - Absorption on a single nucleon is forbidden due to momentum and energy conservation
 - Two body process give insight into two body (nucleon-nucleon) correlations
 - In Geant 4 only two nucleon process simulated (details in next page)
 - Multi-nucleon absorption is still an open question
 - Mechanism is not well understood; No satisfactory theory describing pion absorption, especially for the heavier nuclei
- <u>Cross Section Measurement</u>
 - Select non-pion/only nucleon events
 - Subtract xsec of other processes from total eve $\sigma_{total} = \sigma_{abs} + \sigma_{cex} + \sigma_{inel} + \sigma_{elas}$

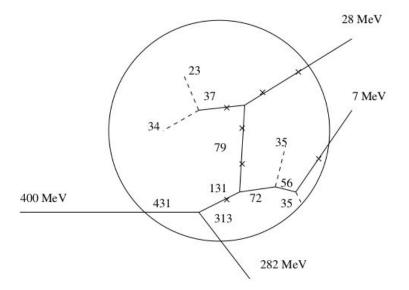
Pion Absorption Reaction in GEANT4

The primary process for pion absorption on heavy nuclei (A>0) is thought to be the absorption on two nucleons (2NA, I=0 pn pair)

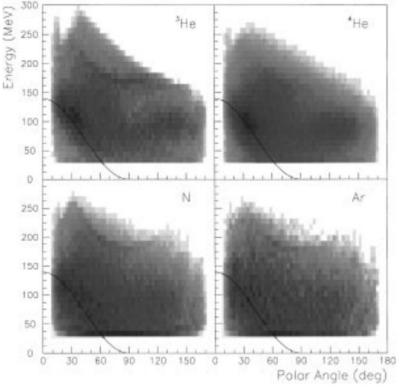

- The quasi-free absorption on two nucleons which are emitted back to back
 - Residual nucleus can be seen as spectator
- The Pion Absorption channels are (in GEANT4)
 - \circ π^+ nn->pn, π^+ nn->pn
 - \circ π^0 nn->nn, π^0 pn->pn, π^0 pp->pp
 - \circ π pn->nn, π pp->pn

Opening questions of nuclear effects in pion absorption and Previous experimental result

Pion Absorption: ISI & FSI


 Initial State Interaction (ISI): the pion knocks out a nucleon by quasi-elastic scattering before absorbing on two other nucleons -WEAK

 Final State Interaction (FSI): 2 N absorption followed by one of the two nucleons knocking out a third one in a final state interaction

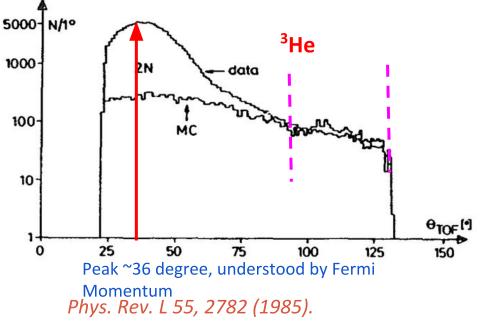

Pion Absorption: ISI & FSI

- Final State Interaction (FSI): 2 N absorption followed by more nucleons knocking out of the nucleus
 - Classic INC, bertini INC
 - Data-driven FSI model used in GENIE
- ISI: the pion knocks out a nucleon by quasi-elastic scattering before absorbing on two other nucleons -WEAK

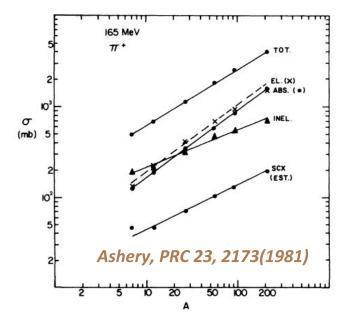
Schematic presentation of intra-nuclear cascade. A hadron with 400 MeV energy is forming an INC history. Crosses present the Pauli exclusion principle in action (*Ref: A. Heikkinen, N. Stepanov, Bertini intra-nuclear* cascade implementation in GEANT4)

Evidence of ISI from LADS

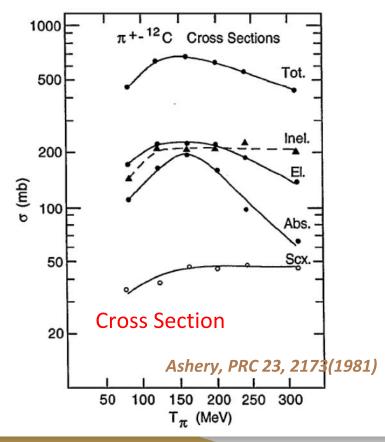
Result from Large Acceptance Detector System (LADS) experiment, ppp results of different targets

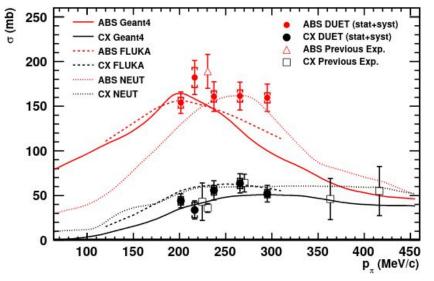

- Kinetic energy of proton > 30MeV
- Unobserved energy < 50 MeV
- The line passing through this region indicates the relationship between energy and angle for free π⁺ p scattering
- ISI for Argon is weaker compared to the lighter nuclei - Hard to measure with protoDONE

Ref. Phy. Rev. C, 53, R2591

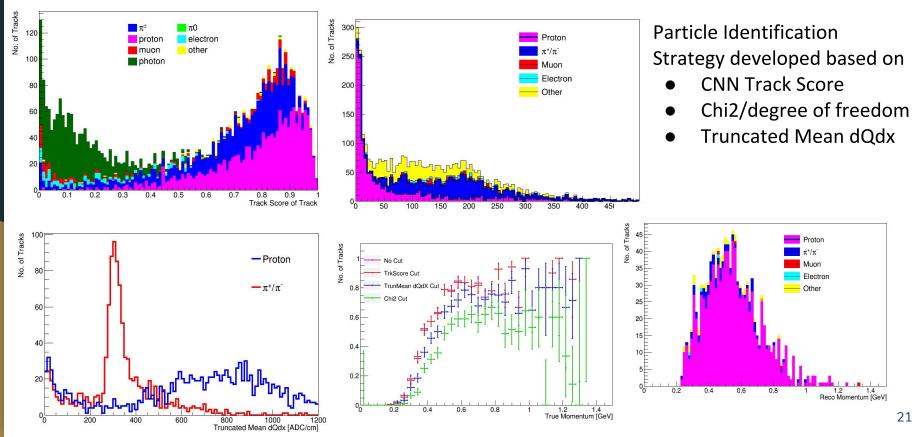

Evidence of Multiple Nucleon Absorption

- Multi-nucleon Absorption
 - Previous experiments have
 - Shown the 2NA
 - cross-section does not exhaust the total absorption cross sections
 - Reported 3N phase space like contributions and associated them with 3N absorption
 - First positive indication of a 3N absorption dynamic signal


Measurement from the Swiss Institute for Nuclear Research Ring Accelerator


Previous Experimental Result

A dependance: xsec scales with power $\frac{2}{3}$ for pion absorption

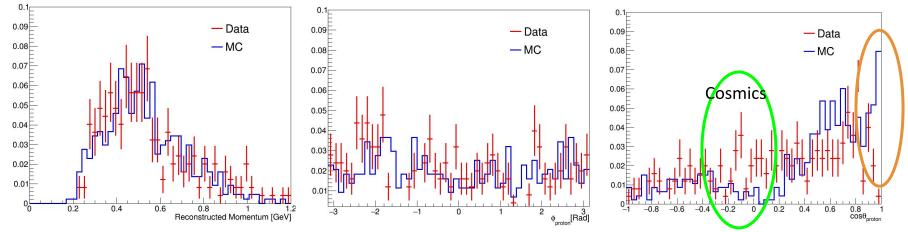

Previous Experimental Result

Ref: arXiv: 1611.05612

- Charge Exchange and Absorption process cross sections shown on the left with statistical and systematic error bars
- DUET vs previous experimental result
 - 265 MeV pi+ on oxygen Asheryat.al (*Phys. Rev. C, 30(3):946 (1984*))
- NEUT v5.3.5 cascade model
- GEANT4 v9.04.04: Bertini cascade model
- FLUKA: cascade model
- No more pion absorption experimental data above 400 MeV

Particle Identification Strategy

21


Data-MC Comparison - Area Normalized

Event Selection (MC)

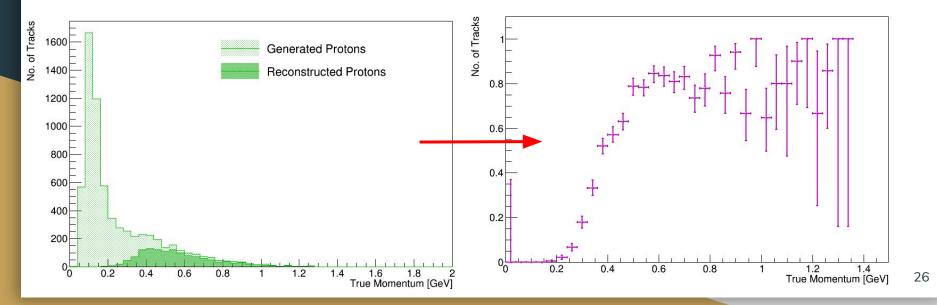
- Beam End to Track Start matching, based on Jake and Owen's work
- Track Score + Truncated Mean dQdx +Chi2
 Cut to select proton candidates

Event Selection (Data)

- Beam End to Track Start matching, based on Jake and Owen's work
- Removed tracks go through the TPC
 - Further removed cosmics

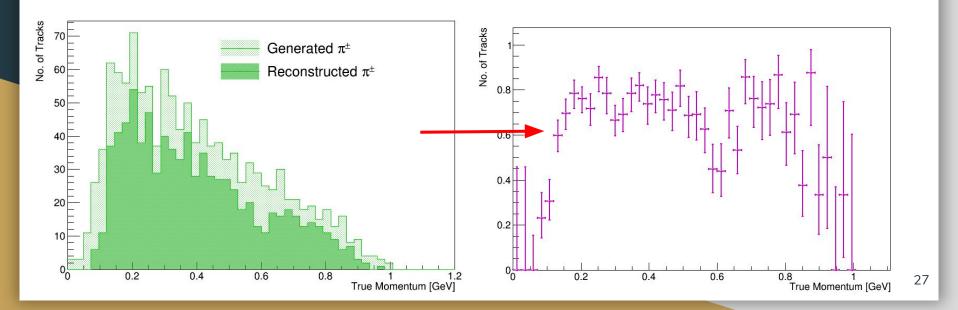
Research Plan with Pion Absorption Processes

- Pion Absorption
 - Complete Event Selection
 - Characterize the kinematic distribution of the protons
 - Calculate xsec based on the event selection
- Pion Nuclear Effect Study through the pion absorption processes
 - Nucleon-Nucleon correlation
 - Neutron Energy
 - Transverse Imbalance
- Look for evidence of Multi-Nucleon processes
 - Not a easy work, but will try it

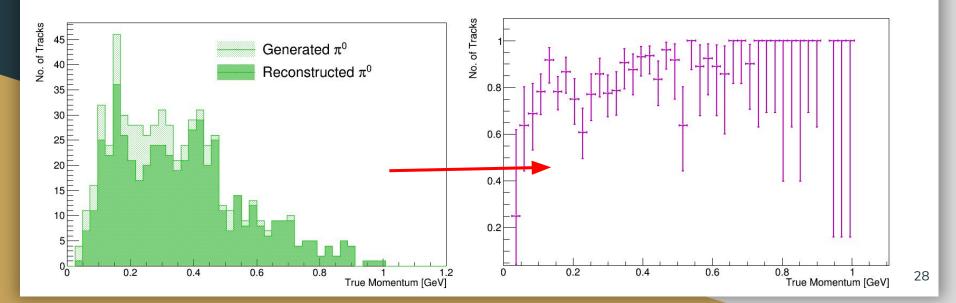

Summary & Conclusion

- Factorization Method is widely used in simulation/event generator
- There are still many opening questions in modeling pion absorption process, no satisfactory models to describe this process
- No pion absorption/charge exchange measurement above 300 MeV
 - Any measurement will be very valuable
- Pion Analysis Group are planning to do pion absorption/charge exchange event selection, cross section measurement and nuclear effect study
- (more details will be shown in Jake and Francesca's talk)

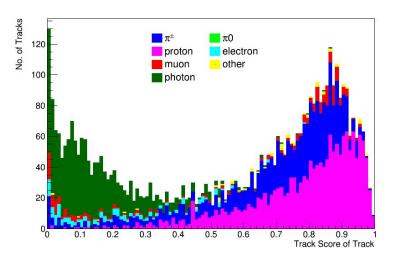
BackUp Slides


Proton Reconstruction Efficiency

- All the particle identification results come from 1GeV pion MC sample with SCE on
- Left: True Momentum distribution of generated protons vs reconstructed protons
- Right: Reconstruction efficiency of protons (calculated from the true momentum distributions at the left side)


Charged Pion Reconstruction Efficiency

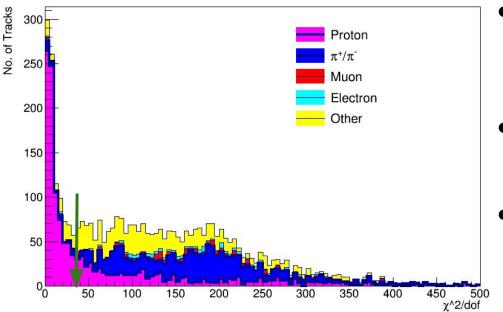
- Fewer low momentum pions produced in the Pion Argon interaction
- Reconstruction efficiency decrease to ~0 with the true momentum < 0.1 GeV



π^0 Reconstruction Efficiency and Identification

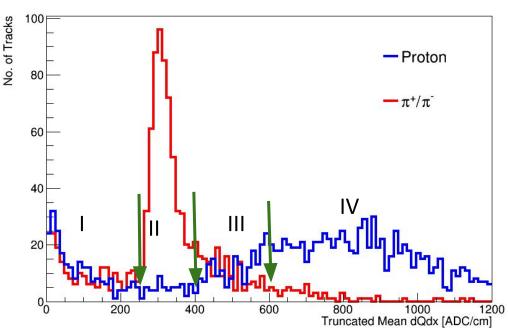
- Better neutral pion shower reconstruction efficiency in protoDUNE
- Reconstruction efficiency is low in the low momentum region dune to the low statistics

Proton Identification - Track Score



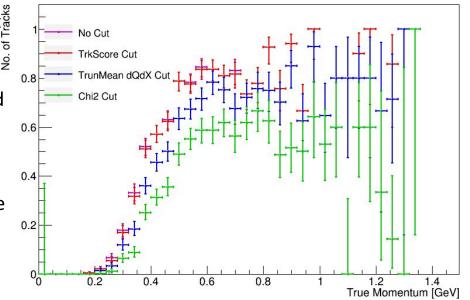
• Good track/shower separation with the CNN track score

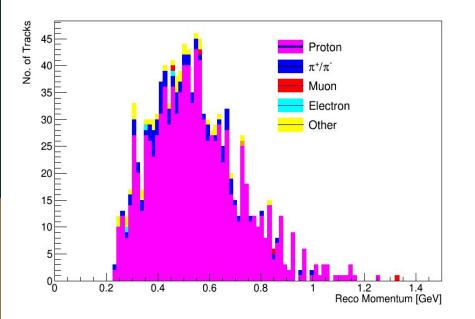
- Most of the PF particles with shower less than 0.3 are photons
- Cut value 0.3 was used for the track shower separation


Add a fraction of photons come from pi0 decay of all the photon !!!!

Particle Identification - Chi2

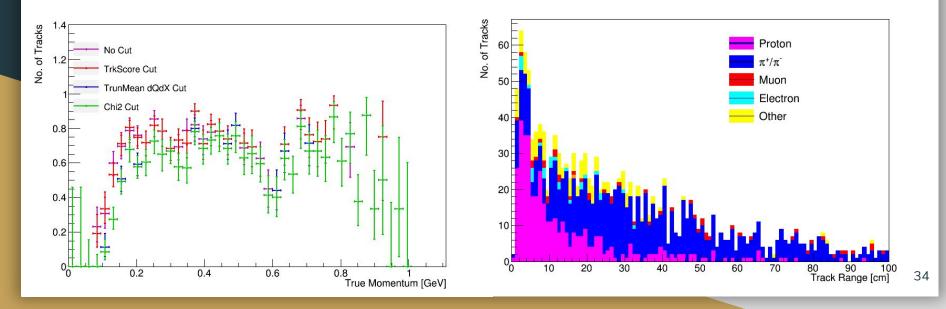
- Chi2/ndof distributions (Left)
 - Ndof: number of hits on collection plane
 - No other cuts performed
- Chi2 with proton hypothesis is was used to selected protons in MicroBooNE
- Cut value ~40 suggested in the pion beam events at 1 GeV


Pion Identification - Truncated Mean dQdx


- Truncated Mean dQdx distribution after track score cut
- Protons and pions are separated by truncated mean dqdx at a good level
 - All the tracks are divided into 4 regions according to the truncated mean dqdx
 - I and III transition region
 - \circ II -- pion region
 - IV -- proton region

Particle Identification - Protons

- Lots of low momentum protons can not be reconstructed due to low momentum
- A scheme of proton identification based on track score, truncated mean dQdx and chi2 cut
 - More complex particle identification scheme means more systematic uncertainties


Particle Identification - Protons

- A scheme with the combination of Track score+truncated mean dqdx+chi2 cut is performed to selected proton candidates
- The figure (Left) shows the reconstructed momentum distribution of selected proton candidate
- The proton purity is ~90%

Particle Identification - Pions

- Track score + truncated mean dqdx + chi2 cut cut off part of the proton backgrounds for pion identification
- Further background subtraction still needed, such as track range cut

