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Introduction Results

Motivation

LHC requires large
number of Monte
Carlo events

Due to CPU costs,
MC statistics will
become significant
uncertainty

[ATLAS]
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W++jets, LHC@14TeV

pT,j > 20GeV, |ηj| < 6

WTA (> 6j)
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[S. Höche, S. Prestel, H. Schulz, 1905.05120]

Time to generate an event dominated by hard process not shower
Large computational cost for unweighting at high multiplicity
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Importance Sampling

No Importance Sampling∫ 1

0
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MC−−→ 1
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q(xi)
iid q(x)

Goal: Choose a function q(x) such that f(x)
q(x) ≈ 1.

Best is q(x) = f(x), requires analytic inverse of CDF

Acceptable to get close enough by fitting f(x) to some assumed form
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Introduction Results

Previous Approaches

Generate From Events:

Pros:

Fast evaluation of
events
Easy to train using
existing frameworks

Cons:

Requires large sample
of events to train
Under-trained →
Wrong cross-sections

Generate Events:

Pros:

No events required to
train
Under-trained → Still
correct cross-section

Cons:

Requires Jacobian of
Neural Network in
inference
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Introduction Results

Normalizing Flows

Problem: Numerical Jacobian of Network scales like O
(
n3
)

Goal: Develop a network architecture with analytic Jacobian.

Requirements:

Bijective

Continuous

Flexible

Answer: Normalizing Flows!

First introduced in ”Nonlinear Independent Component Estimation” (NICE)
[1410.8516]

More complex transformations using splines in [1808.03856] and [1906.04032]

Easy to implement using TensorFlow-Probability
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Normalizing Flows: Basic Building Block

Forward Transform:
yA = xA

yB,i = C(xB,i;m(xA))

Inverse Transform:
xA = yA

xB,i = C−1(yB,i;m(yA))

The C function: numerically cheap, easily invertible,
and separable.
Jacobian:

∣∣ ∂y
∂x

∣∣ = ∣∣∣∣∣1 ∂C
∂xA

0 ∂C
∂xB

∣∣∣∣∣ = ∂C(xB ;m(xA))

∂xB

Jacobian is O (n)
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Introduction Results

Test Functions: 4-d Camel

Target Distribution:

Final Integral: 0.0063339(41)

Before Training:

VEGAS: 0.0063349(92)
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Introduction Results

Results

unweighting efficiency LO QCD NLO QCD (RS)

〈w〉/wmax n =0 n =1 n =2 n =3 n =4 n =0 n =1

W+ + n jets Sherpa 2.8·10−1 3.8·10−2 7.5·10−3 1.5·10−3 8.3·10−4 9.5·10−2 4.5·10−3

NN+NF 6.1·10−1 1.2·10−1 1.0·10−3 1.8·10−3 8.9·10−4 1.6·10−1 4.1·10−3

Gain 2.2 3.3 1.4 1.2 1.1 1.6 0.91

W− + n jets Sherpa 2.9·10−1 4.0·10−2 7.7·10−3 2.0·10−3 9.7·10−4 1.0·10−1 4.5·10−3

NN+NF 7.0·10−1 1.5·10−1 1.1·10−2 2.2·10−3 7.9·10−4 1.5·10−1 4.2·10−3

Gain 2.4 3.3 1.4 1.1 0.82 1.5 0.91

Z + n jets Sherpa 3.1·10−1 3.6·10−2 1.5·10−2 4.7·10−3 1.2·10−1 5.3·10−3

NN+NF 3.8·10−1 1.0·10−1 1.4·10−2 2.4·10−3 1.8·10−3 5.7·10−3

Gain 1.2 2.9 0.91 0.51 1.5 1.1
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Introduction Results

Conclusions

Traditional Integration

Numerical integration and the need for Monte Carlo

Current approaches not sufficient for LHC

Normalizing Flows

Avoid computational difficulty of Jacobian

Using splines to approximate CDF

Results

Better than Sherpa up to 3j in all but Z channel

Room still for further optimization

Limited by computational resources to train, and not by algorithm
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Normalizing Flows: Piecewise CDF

Piecewise Linear CDF: [Müller et al. 1808.03856]

The NN predicts the pdf bin heights Qi.

pdf cdf

C =

b−1∑
k=1

Qk + αQb

α =
x− (b− 1)w

w∣∣∣ ∂C∂xB

∣∣∣ =∏
i

Qbi

w

Rational Quadratic CDF: [Durkan et. al. 1906.04032]

Predict widths (w(k)), heights (y(k)), and derivatives (d(k)) of the knots of spline.

C = y(k) +
(y(k+1) − y(k))[s(k)α2 + d(k)α(1− α)]
s(k) + [d(k+1) + d(k) − 2s(k)]α(1− α)

α =
x− x(k)
w(k)

s(k) =
y(k+1) − y(k)

w(k)
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