



# Al in Astrophysics at Fermilab

João Caldeira FNAL Al Jamboree 13 February 2020

#### **Cosmic Microwave Background polarization lensing**



- info: provides handle on large-scale structure at low redshift
- nuisance: distorts primordial
  CMB —> use lensing
  potential to 'undo' the lensing
  (delensing)



#### **Cosmic Microwave Background polarization lensing**



Credit: ESA

- info: provides handle on large-scale structure at low redshift
- nuisance: distorts primordial
  CMB —> use lensing
  potential to 'undo' the lensing
  (delensing)

#### Why ML?

- current methods are suboptimal at low noise
- it's an image-to-image regression problem



## **CMB** delensing results with increasing noise

For more details, see <u>1810.01483</u>



Follow-ups coming!





## So, it works, but what can you say about uncertainties?

Many methods to determine uncertainties in your deep learning algorithm

- deep ensembles
- concrete dropout
- bayesian neural networks
- ...

What are the advantages and disadvantages of each?



#### Working on a guide+comparison

For this, take a simple physics model: a pendulum. Which method reproduces what we expect as physicists?

Coming soon!





## Can you use quantum computing to help ML?

A quantum annealer is a type of quantum computer. Think of Ising model with tunable biases and couplings.





## Can you use quantum computing to help ML?

A quantum annealer is a type of quantum computer. Think of Ising model with tunable biases and couplings.



Restricted Boltzmann Machines are an ML algorithm with a similar architecture!

$$P(v,h) = \frac{1}{Z}e^{-E(v,h)} \left( v_1 \right) \left( v_2 \right) \left( v_3 \right)$$

$$E(v,h) = -b_i v_i - c_j h_j - J_{ij} v_i h_j$$



#### **RBM** for astrophysics

Can we use a quantum annealer to train a restricted Boltzmann machine to classify galaxy morphology?

#### Issues:

- you have to compress the data a lot to fit into a current quantum computer (~ 48 bits)
- distribution that comes out of annealer is not quite Boltzmann

Still, we had some success for datasets with few examples of each class! See more at 1911.06259



#### **Conclusions**

Just showed you three examples of things we have been working on.

If you have more ideas, let's chat!



10