The LHE Accord:

A Bridge Between Different Theory Communities

Stephen Mrenna
Fermilab

January 22, 2020

Two Approaches to $v A$ Interactions

I. Right nuclear physics is essential: Must simulate $v A$ interactions from the start

* accurate lepton-side predictions
* hadron-side un- or under-specified
* calculations are hard and not always for the desired nucleus
* many analyses need predictions of exclusive final states
* not many free parameters to fit/tune to data
II. Can simulate $v n$ interactions and build up $v A$ interaction
\star universality of n form factors
\star assumption of some factorization of different effects
\star nuclear physics: coupling between nucleons is weak enough and can be corrected for
* many exclusive final states
* many free parameters to tune to data

Correspondence to Collider Physics

I. == NLO calculations, possibly resummed, for W boson p_{T} and/or high-multiplicity tree-level predictions for $W+n$ partons
II. == "universal" event generators (EGs) centered on $2 \rightarrow 2$ QCD cross section formulae
I. parton + parton \rightarrow partons in powers of $\alpha_{s}^{n}(Q)$
II. injection of configurations into $E G$ to:

1. include $\alpha_{s}^{m}\left(p_{T}\right) \log ^{\prime}\left(p_{T}\right)$ physics
2. treatment of remnant, hadronization, complete event

夫 In many cases, I + II is not trivial - not simply an addition of effects and requires an intelligently-designed interface

I + II Methodology

A. Accord or agreement between I-types and II-types on what information needs to be provided

* Originally formatted text
* XML + formatted text
* HDF5/table-based format
B. Removal of double-counting
* original partons vs. shower generated partons
* EG vetos event configurations covered elsewhere e.g. W + 4 partons vs. $\mathrm{W}+3$ partons + parton shower
* I-type calculations regulated (cut-off) in a particular way and interpolated onto II-type effects

I + II Methodology (cont)

C. Treatment of negative weights

* cancellation of negative and positive contributions of NLO calculations are preserved
* I-type calculation adapted to perform subtractions "differently"
* II-type calculations add on shower in a special way to preserve kinematics
B. was rather easy to develop. C. took a longer. All happened because of A.

Both I-types and II-types had to make changes.
<init>
$221222120.65000000000 \mathrm{E}+040.65000000000 \mathrm{E}+0400306000306000-34$
$4.000670129264 \mathrm{E}+011.088725816637 \mathrm{E}-014.419544706022 \mathrm{E}-023$
$5.995362703038 \mathrm{E}+011.631644291637 \mathrm{E}-014.419544706022 \mathrm{E}-022$
$7.040187945418 \mathrm{E}+011.916030265070 \mathrm{E}-014.419544706022 \mathrm{E}-021$
$4.953441846915 \mathrm{E}+011.348100811928 \mathrm{E}-014.419544706022 \mathrm{E}-020$
<generator name='MadGraph5_aMC@NLO' version='\#5.2.4.2'>please cite 1405.0301 </generator>
</init>
<event>
$120+2.2069456 \mathrm{e}-02 \quad 2.00363700 \mathrm{e}+02 \quad 7.54677100 \mathrm{e}-03 \quad 1.05487900 \mathrm{e}-01$

| 21 | -1 | 0 | 0 | 503 | $502+0.00000000000 \mathrm{e}+00+0.00000000000 \mathrm{e}+00+1.05307463190 \mathrm{e}+02$ | $1.05307463190 \mathrm{e}+02$ | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 21 | -1 | 0 | 0 | 501 | $503+0.00000000000 \mathrm{e}+00$ | $+0.00000000000 \mathrm{e}+00$ | $-9.65615793130 \mathrm{e}+02$ | $9.65615793130 \mathrm{e}+02$ | |
| 6 | 2 | 1 | 2 | 501 | 0 | $-8.83065899650 \mathrm{e}+01$ | $-5.07236813264 \mathrm{e}+01$ | $-8.47091691809 \mathrm{e}+02$ | $8.70665023423 \mathrm{e}+02$ |
| 5 | 1 | 3 | 3 | 501 | 0 | $+1.34321809442 \mathrm{e}+01$ | $+2.78060430736 \mathrm{e}+01$ | $-3.21801435597 \mathrm{e}+02$ | $3.23279698510 \mathrm{e}+02$ |
| 24 | 2 | 3 | 3 | 0 | 0 | $-1.01738770909 \mathrm{e}+02$ | $-7.85297244001 \mathrm{e}+01$ | $-5.25290256212 \mathrm{e}+02$ | $5.47385324913 \mathrm{e}+02$ |
| -11 | 1 | 5 | 5 | 0 | 0 | $+1.43810188436 \mathrm{e}+01$ | $-6.48680453639 \mathrm{e}+00$ | $-3.46923076664 \mathrm{e}+01$ | $3.81110029689 \mathrm{e}+01$ |
| 12 | 1 | 5 | 5 | 0 | 0 | $-1.16119789753 \mathrm{e}+02$ | $-7.20429198637 \mathrm{e}+01$ | $-4.90597948545 \mathrm{e}+02$ | $5.09274321944 \mathrm{e}+02$ |
| -6 | 2 | 1 | 2 | 0 | $502+8.83065899650 \mathrm{e}+01$ | $+5.07236813264 \mathrm{e}+01$ | $-1.32166381311 \mathrm{e}+01$ | $2.00258232897 \mathrm{e}+02$ | |
| -5 | 1 | 8 | 8 | 0 | $502+6.98135212834 \mathrm{e}+01$ | $-3.67874377554 \mathrm{e}+01$ | $-7.18814519044 \mathrm{e}+00$ | $7.92395908739 \mathrm{e}+01$ | |
| -24 | 2 | 8 | 8 | 0 | 0 | $+1.84930686817 \mathrm{e}+01+8.75111190818 \mathrm{e}+01$ | $-6.02849294065 \mathrm{e}+00$ | $1.21018642023 \mathrm{e}+02$ | |
| 11 | 1 | 10 | 10 | 0 | 0 | $+1.92736543519 \mathrm{e}+00$ | $+3.17729642002 \mathrm{e}+01$ | $+3.69065634315 \mathrm{e}+01$ | $4.87373616019 \mathrm{e}+01$ |
| -12 | 1 | 10 | 10 | 0 | 0 | $+1.65657032465 \mathrm{e}+01+5.57381548816 \mathrm{e}+01$ | $-4.29350563722 \mathrm{e}+01$ | $7.22812804213 \mathrm{e}+01$ | |

<scales pt_clust_1="13000.0" pt_clust_2="13000.0" pt_clust_3="13000.0" pt_clust_4="13000.0" pt_clust_5="13000
<mgrwt>
<rscale> $20.20036371 \mathrm{e}+03$ </rscale>
<asrwt>0</asrwt>
<pdfrwt beam="1"> $1 \quad 210.16201147 e-010.20036371 e+03</ p d f r w t>$
<pdfrwt beam="2"> $1210.14855628 \mathrm{e}+00$ 0.20036371e+03</pdfrwt>
<totfact> 0.10976794e+02</totfact>
</mgrwt>
<clustering>
<clus scale=" 200.364"> 231 -1</clus>
<clus scale=" 200.364"> 132 -1</clus>
</clustering>
</event>

The Path was not straight and flat
 Premature optimization is the root of all evil - D. Knuth

May 2001, Les Houches (my memory)
After a full day of discussions in the library at Les Houches, most of us were spent after dealing with difficult colleagues and the details of the interface. However, that night, Torbjorn put together a prototype and, by the next day, the Alpgen people (MLM) were trying it out. Suddenly, everyone else was scrambling to catch up.

It is a prime example of positive stubbornness beating negative stubbornness.

Evolution

Format has changed with improved theory calculations

(No one knows the momenta of incoming partons - such situations are not unique to neutrino physics)

External weights per event:

* parton distribution groups provide either replicas or eigen vectors to represent uncertainties.
$\star \sim 100$ weights for a given pair of incoming partons
NLO uncertainties
* calculations provide weights of factorization and renormalization scale variations
EG interface
* Energy scales are provided to indicate the starting scale for parton showers to control double-counting

Concluding Remarks

\star interface of advanced theory calculations and event generators is neither trivial nor unattainable

* common language between communities is necessary
* understanding of the overlap between different physics effects is necessary - public user hooks are needed to implement this
* My experience: whoever does this first will drive everyone else

