SAND2015-5661PE

Exceptional service in the national interest

Polymer Aging of Plastic Scintillators

Patrick Feng, Sandia National Laboratories

7-1-2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Background and Context

Large-area plastic scintillator gamma-ray (counting) detectors

Motivation:

- The long-term stability of plastic scintillator materials is of interest
- The specific degradation mechanisms leading to performance reduction are not fully understood at present
- What methods are available towards stabilizing these materials in real-world environments?

Large-area plastic scintillator internals

- Prior work by PNNL estimated that large PVT scintillators have an expected lifetime of 10 years when deployed in uncontrolled environments
- State-of-health may be assessed by background count rate
- Results indicate an average sensitivity loss of ~4% per year

Literature Examples of Scintillator Aging

Several plastic scintillator aging studies have been performed (primarily for physics and astronomy applications):

- 1. Fermilab:
 - a) SSC detector (1993)
 - b) MINOS scintillator system (1998)
- 2. LHAASO Project (2011)
- 3. PS vs. PVT aging studies
 - a) Barnaby and Barton (1962)
 - b) Ukranian PS plastic scintillator vs NE-114 PVT plastic scintillator (2005)
- 4. Scintillator non-homogeneity (2009)

Ukranian Polystyrene Plastic Scintillator 'UPS 923A'

- UPS 923A is PS analog of NE114 (PVT)
- Polystyrene, 2% *p*-terphenyl, and 0.03% POPOP
- Deployed at Fermilab Tevatron for 4 years in CDF detector
- Laboratory conditions (temp, humidity, radiation)
- Reference UPS 923A scintillator shows little degradation over 12 year period

PS scintillator less sensitive to performance degradation over time than corresponding PVT scintillator

- Organic materials are susceptible to environmental effects/aging
- Polymeric systems possess additional considerations:
 - Relaxation behavior, bulk mechanical properties, impurity effects
- Scintillators are even more complex due to multi-component mixtures and varied preparation techniques (proprietary parameters?)

Key Factors that Impact Long-Term Stability/Performance of Plastic Scintillators:

- 1) Crazing in glassy amorphous systems
 - Organic small molecule additives and impurities
 - Other materials in contact with polymer (i.e. optical grease)
- 2) Diffusion of small molecules
 - Internal solutes/impurities
 - Gases/vapors
- 3) Oxidation
 - O₃, PAHs, NO_x

Can the specific degradation modes be identified and consequently addressed?

1. Origins of Polymer Crazing

Deformation w/out increase in volume: Shear

Deformation with volume increase: Crazing

Figure 1: schematic drawing of microscopic events involved in craze nucleation: a) formation of a localised surface plastic zone and build-up of lateral stresses, b) cavitation of the plastic zone and c) deformation of the polymer ligaments between voids and coalescence of individual voids to form a void network (after Kramer [1]).

- Crazing is due to plastic deformation in regions of localized hydrostatic stress, followed by cavitation (void formation)
- Crazing increases the local micro-hardness and elastic modulus of material but often precedes brittle failure (due to breakdown of crazing network)
- Local plasticization is operative in the presence of a crazing agent

Craze Initiation: Surface Effect

- Lower T_g of the Polystyrene (PS) surface indicates greater free volume than the polymer bulk
- Suggests less entanglement density near surface
 - Confirmed as free polymer ends via SIMS depth profiling
- Greater free volume of mobile chains ends (at surface) lead to higher crazing susceptibility

Recurring Theme: Non-uniform nature of amorphous polymers

Origins of Crazing: Strain Rate and Thermal History

- Two brittle-ductile transitions in PS:
 - High strain rates and low temperatures (mechanical stimulus → bond breaking)
 - Low strain rates and high temperatures (disentanglement)

Fig. 1. GPC chromatograms for virgin and crazed polystyrene.

- Free volume in a polymer is always greater than the molecular volume due to imperfect chain packing
- Free volume is sensitive to cooling rate

Thermal History and Entanglement Density

- Plasticizers increase the mobility of structural elements in a polymer:
 - Reduction in glass transition temperature (T_g) and rigidity
 - Reduction in van der Waals surface energy (intermolecular forces between chains)
 - Increase in toughness (impact strength)
- Effective plasticizers possess good internal/conformational mobility
- Plasticizers reduce crystallizability and increase chain flexibility
 - Interpose polymer chains (disentanglement)
- Plasticization effects also dependent upon a polymer's history

Table IX. Effect of Plasticizer on T_g of Polystyrene (2)			
Plasticizer	% Plasticizer	T,	
Ethylbenzene	0 3 5 10	82 68 50 22	
Paraffin Oil	0 3 10 20 50	80 75 56 49 43	

Plasticization may occur at additive/fluorophore concentrations used in scintillators (1-5% w/w)

E.H. Immergut et al. "Principles of Plasticization", Advances in Chemistry 1965, 1-26.

2. Diffusion in Polymers

Comparison of n-bexane sorption in preswollen (\triangle), 'asreceived' (\Box), and annealed samples (\bigcirc) at $p/p^0 = 0.75$ and 30°C. Sorption-cycle 1, polystyrene, $d = 0.534 \ \mu m$

- Pre-swollen PS exhibits Fickian diffusion kinetics
- Annealing leads to anomalous diffusion behavior
- 'As-received' sample exhibits intermediate diffusion kinetics (unknown thermal history)

Fickian Diffusion:

$$J = -D\frac{d\sigma}{dx}$$

- $J = \text{'diffusion flux', [mol/(cm^2 \cdot sec)]}$ $D = \text{diffusion coefficient, (cm^2/sec)}$ $d\phi/dx = \text{concentration gradient}$
- Steady-state diffusion is proportional to concentration gradient
- Usually obeyed for vapor diffusion through polymers above T_q

Anomalous Diffusion:

Typifies transport kinetics below T_q

 $\frac{\text{Water Diffusion in PS and PVT:}}{D_{\text{PS}} = 2.2 \cdot 10^{-8} \text{ cm}^2 \text{sec}^{-1} (30^{\circ} \text{ C})}$ $D_{\text{PVT}} = 1.3 \cdot 10^{-7} \text{ cm}^2 \text{sec}^{-1} (30^{\circ} \text{ C})$

Oxygen Diffusion in PS and PVT

 $D_{PS} = 3.1 \cdot 10^{-7} \text{ cm}^2 \text{sec}^{-1}$ (25° C) $D_{PVT} = 6.8 \cdot 10^{-7} \text{ cm}^2 \text{sec}^{-1}$ (25° C)

Diffusion of different species are of interest: Crazing, Phase Transitions, Oxidation

Toluene Diffusion in PS

 $D_{\rm PS} = 5.1 \cdot 10^{-6} \, \rm cm^2 sec^{-1}$ (30° C)

P.C. Turner et al. *Rad Phys. Chem.* **1993**, 41, 57-64.
V.V. Krongauz et al. *Polymer Commun.* **1991**, 32, 7-9.
S. Pickup et al. *Macromolecules* **1989**, 22, 3961-3968.

Diffusion in Polymers (cont.): Crazing

- Higher temperature aging accelerates physical aging (free volume recovery)
- Slower diffusion rate associated with reduced free volume in thermally-aged sample (Note y-axis log scale)
- Implications for crazing and T_g reduction due to plasticization effect of guest

L. Nicolais et al. *Polymer* **1979**, 20, 459-465.

V. Vittoria et al. "Transprt Properties of Dichloromethane in Glassy Polymers" 1992, 257-262

Figure 10 The effect of draw ratio and temperature on the appearance of polystyrene sheets which have been immersed in n-hexane.

- Higher temperatures increases diffusion/crazing
- Larger draw ratios increases <u>order</u> via strain-induced effect:
 - More susceptible to crazing (defects)
 - Similar effect for extruded polymers

3. Oxidation (via diffusion)

- Light, ozone, and NO₂ oxidation of styrenyl polymers yield similar products
- Styrene hydroperoxide and radical intermediates may undergo side reactions
- Irreversible reactions: Degradation of scintillator components/properties

Antioxidants and radical-trapping compounds have been shown to be effective for the UV-stabilization of polymers

- Yellowing in PS is associated with:
 - Decrease in MW due to chain scission
 - Formation of carbonyls and alcohols (i.e. benzophenone, benzoin, benzoyl acetone)
- Low concentrations of radical scavengers typically effective for UV-stabilization

Water Uptake / Condensation and Scintillator Transparency

Moisture Effects in PVT Scintillators:

- Scintillators on the left in each picture were heated to 55° C for 30 days at 90% relative humidity
- Cooling to -30°C resulted in freezing of trapped moisture ('fogging')
- Effect was reversible as polymer returned to RT (right figure)

Initial thoughts and questions:

- Reversibility of the effect and impact on long-term performance?
- Are testing conditions representative of realistic environments?
- Does performance reduction occur across all deployments, or only for materials in hot/ humid → cold locations?
- Uniform degradation for scintillators at a single location?

Approaches to Understand/Improve the Scintillator Properties

- 1) Diffusion barrier layer (i.e. Parylene)
- 2) Replace polymer with more resilient material: (i.e. Styrene-acrylonitrile)
 - High Chemical resistance, high heat resistance, transparent, low cost, high entanglement density
- 2) Cross-linking to increase entanglement density, molecular weight, glass transition temperature
- 3) Co-polymerization to increase uniformity of polymer and dissolved fluorophores

Styrene-acrylonitrile plastic part

Stabilized chain entanglements via cross-linking

	Cross-Linked PS	Linear PS	Expanded PS
Chemical Resistance			
Conc. Acids	Fair	Poor	
Dilute Acids	Good	Fair	
Alcohols	Good	Fair	
Alkalis	Fair	Fair	
Aromatic Hydrocarbons	Poor	Poor	
Greases/Oils	Fair	Fair	
Halogens	Poor	Poor	
Ketones	Poor	Poor	
Physical Properties			
Density (g/cm^3)	1.05	1.05	0.02
Refractive index	1.59	1.59	
Resistance to UV	Good	Poor	
Water Absorption (%, over 24 hours)	0.02	0.3	3
Glass Transition Temperature (C)	130*	100	100
*(Depends on extent of cross-linking)			

Stabilization and Uniformity via Co-Polymerization

(p-terphenyl)

- Non-uniform distribution of dissolved solutes (aggregation) impacts scintillation and physical properties
- Scenario is more complex than a plasticized system with molecularly distributed small molecules

$$f(T) = \exp\left(-t/\tau_d - 2\frac{1.38}{\sqrt{6}}\pi^{3/2}R_0^3c_a\sqrt{t/\tau_d}\right)$$

Förster Radius for PS/*p*-terphenyl : 15 Å Calculated PS domain radius: 32 Å

- Optical/Electron Microscopy: Defect microstructure, elemental composition
- <u>Differential Scanning Calorimetry (DSC)</u>: Phase transitions / glass transition temperature
- <u>Small-Angle X-ray Scattering (SAXS)</u>: Orientation dependence of crazing / defects
- <u>Gel Permeation Chromatography (GPC)</u>: Molecular weight distribution
- Infrared spectroscopy (IR): Presence of oxidized species (i.e. carbonyl, hydroxyl).
- UV-Vis and dynamic light scattering (DLS): Transparency and optical attenuation length
- <u>X-ray photoelectron spectroscopy (XPS)</u>: Elemental composition and bonding environment.

- Plastic scintillators are complex materials due to multi-component compositions, inherent non-uniformity, and transient behavior
 - Physical aging
 - Stress dissipation
 - Thermal History
 - Internal and external diffusion, phase changes
 - Oxidation
 - Intrinsic polymer properties and polymer-solute interactions
- Potential degradation mechanisms are known, although the relative importance of each process is not fully understood in 'field-aged' materials
 - Routine characterization techniques are able to elucidate these factors
- Degradation mitigation methods exist for each of the discussed damage mechanisms

