Introduction to Neutrinos at Fermilab

53rd Annual User's Meeting 13 August 2020

 $\overline{\nu}\overline{\nu}\overline{\nu}\overline{\nu}$

Andy Mastbaum

Rutgers University mastbaum@physics.rutgers.edu

Why Neutrinos?

Neutrino UUUUUUU Neutrino Production

Neutrinos at Fermilab

Theory Beams R&D Neutrino Experiments Operations and Facilities

Neutrinos?

- Weak interactions with other matter (atoms & nuclei)
 - Lots of neutrinos and targets (beams + large detectors)
- Three flavors: electron (v_e) , muon (v_{μ}) , and tau (v_{τ}) , corresponding to charged leptons
- Oscillations changing flavors as neutrinos travel
 - Quantum mechanics at work over very long distances!

Standard Model Particles

Neutrinos?

- A neutrino of **energy** *E* starts out as **flavor** a
- Travels for a **distance** *L*
- Detected as **flavor** a or b
- Oscillations are determined by
 - A few parameters we control: distance *L*, energy *E*
 - A few we try to measure: the amplitude and wavelength, which is related to differences between neutrino masses, Δm

In our threeneutrino universe...

Why Neutrinos?

What is the ordering of the neutrino masses?

Are there matter/antimatter differences in oscillations (CP violation), helping to explain our matter-filled universe?

 $\nu \stackrel{?}{=} \bar{\nu}$

Is the neutrino its own antiparticle?

Standard Model Physics

Beyond the Standard Model

What is the mass of the neutrino, and why is it so small?

Are there new interactions we could discover via neutrinos? Are there additional *sterile neutrinos* beyond the known three types?

 ${\cal V}_{S}$

Why Neutrinos?

What is the ordering of the neutrino masses?

Are there matter/antimatter differences in oscillations (CP violation), helping to explain our matter-filled universe?

 $\nu \stackrel{?}{=} \overline{\nu}$

Is the neutrino its own antiparticle?

Standard Model Physics

Beyond the Standard Model

What is the mass of the neutrino, and why is it so small?

Oscillations

Are there new interactions we could discover via neutrinos?

 ${\cal V}_{S}$ Are there additional *sterile neutrinos* beyond the known three types?

Neutrino Production $\sim \mathcal{VVVVV}$

Neutrino Production $\sim \mathcal{VVVVV}$

More details: See Jeffrey Eldred's "Introduction to Fermilab's accelerators and beams (present and future)" in Session 3

Neutrino Detection

Neutrinos are invisible ...

... and detected via the products of interactions with other matter (nuclei, electrons, etc.)

Neutrino Detection

Baseline: ~100 meters is "short" and ~1000 kilometers is "long" relatively speaking.

Neutrino Program at Fermilab

MINERvA

Precision neutrino interactions

MINOS+

Pioneering long-baseline oscillations

NOVA Off-axis long-baseline v_e appearance

SBN Program

Short-baseline oscillations and new physics

DUNE

Precision long-baseline, CP violation

- Several different target materials
- Tracking with scintillator strips
- Underground at Fermilab

- Precision measurements of neutrino interactions with a variety of nuclear targets (carbon, lead, iron, water, helium)
- Insight into the **structure of nuclei** and forces
- Understanding neutrino interactions is crucial for interpreting data in neutrino oscillation and new physics searches

Example: How are the emitted protons affected by interactions inside the nucleus (final state interactions)? Models are then be tuned to better match the data.

Images: MINERvA

Much more in S. Gardiner's Cross Sections talk, Session 16

NuM

MINOS/MINOS+ (2005-2016)

0.7

Far Detector ng-baseline neutrino oscillations Beam and atmospheric neutrinos Final oscillation results presented July 2020 MINNESOTA arXiv:2006.15208 Minneapolis MINOS, MINOS+ 1600 **—** 90% C Far Detector combined analysis 1400 10.71×10²⁰ POT v, MINOS 735 k 3.0 1200 3.36×10^{20} POT \overline{v}_{μ} MINOS S 9.69 ×10²⁰ POT v_µ^µ MINOS+ Events / GeV MINOS, MINOS+ Chicago MINOS, MINOS+ data Far Detecto — 90% C.L. ☆ Best fit LOWA Prediction, no oscillation combined analysis 600F MINOS MINOS+ combined fi 10.71 × 10²⁰ POT v_{μ} MINOS 3.0 $3.36 \times 10^{20} \text{ POT } \overline{v}_{\mu}$ MINOS 400 9.69 ×10²⁰ POT v MINOS $\Delta m_{32}^2 (10^{-3} e V^2)$ 200 INDIANA 2.5 Indianapolis oscillations 2.0 NOvA (2019 T2K (2020) Super-K (2018 IceCube (2018) KENTUCK 0.6 0.5 0.3 0.4 $\sin^2\theta_{23}$ etector MINOS+ measurements of the parameters

Magnetized Steel Trackers

Hight stats hongebrise finil tion disappearance High stats dorsgi basetine vopadisa and in combination with Daya Bay and Bude

Images: Fermilab, MINOS/MINOS+

n

S

ARY

v. Selection

rediction - ν_μ CC _ - ν_τ CC

MINOS/MINOS+ (2005-2016)

on with Daya Bay

90% C.L. Allowed

- MiniBooNE (2018)

Dentler et al. (2018)

Gariazzo et al. (2019)

MINOS+ PRELIMINARY

10

102

10

10

∆m², (eV²)

MINOS & MIN

INDIANA

Ir d.an ipol

KENTUC

hce:

gm

igey-3

etector

High stats long-baseline v_μ disappearance:
dightgclogestraints on 3 sv paradigm
Beam and atmospheric neutrinos
Normal hierarchy, non-maximal mixingooo

• Final oscillation results presented July 2020 • Search for sterile opertrinos

 $V_{23} \rightarrow A \rightarrow \delta s s i b e hev \rightarrow a d d t i \delta h a b h e u tribo t y pe$

PRL 125, 071801 (2020)

14

No evidence for sterile neutrinos \rightarrow strong constraints on these models

Exclude Margerpairametel space of the state of the state

GeV

8

Liquid Scintillator Trackers

- Long-baseline neutrino oscillations
- **Beam** and **atmospheric** neutrino analysis
- Neutrino interactions with matter
- Ordering of neutrino masses, matter
 - antimatter asymmetry (CP violation)
- Sterile neutrinos and other new physics

NOvA measurements of the parameters controlling oscillations

- Long-baseline neutrino oscillations
- **Beam** and **atmospheric** neutrino analysis
- Neutrino interactions with matter
- Ordering of neutrino masses, matterantimatter asymmetry (CP violation)
- Sterile neutrinos and other new physics

Insights into a matter/antimatter asymmetry

Much more in S. Calvez's NOvA talk, next (Session 15)

ArgoNeuT (2009-2010)

LArTPC: Liquid Argon Time Projection Chamber

3D particle tracking with

NuMI

ton

Model

17

Collection plane wire

Neutrino Program at Fermilab

MINERvA

Precision neutrino interactions

MINOS+

Pioneering long-baseline oscillations

NOVA Off-axis long-baseline v_e appearance

SBN Program

Short-baseline oscillations and new physics

DUNE

Precision long-baseline, CP violation

19

3.0

• Three Liquid Argon TPC detectors

- Short-baseline oscillations (~600 meters)
 - $\nu_{\mu} \rightarrow \nu_{e}$ appearance & $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance
- Goal to definitively address outstanding experimental hints of sterile neutrinos
 - Additional, non-interacting neutrino types
 - Hints from multiple different experiments
- Additional physics beyond the Standard Model
- Precise neutrino-argon interaction measurements

-----Best Fit

Data (stat err.) v_e from $\mu^{+/-}$ v_e from $K^{+/-}$ v_o from K^0

Constr. Syst. Error

 π^0 misid

other

1.2

MiniBooNE's excess of

 v_e -like events

E^{QE} (GeV)

0.8

0.6

0.4

Events/Me

MiniBooNE operated in the Fermilab Booster Neutrino Beam from 2002 – 2019

> Updated background analysis presented at Neutrino 2020

Short-Baseline Neutrino Program

Search for short-baseline neutrino oscillations $\nu_{\mu} \rightarrow \nu_{e}$ appearance and $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance

- Construction in 2020
- 112 tons liquid argon
- SBN near detector

- Running since 2015
- 89 tons liquid argon
- MiniBooNE excess
- Neutrino interactions

ICARUS@FNAL

- Commissioning 2020
- 600 tons liquid argon
- SBN far detector

Installed at Fermilab, April 2020

ANNIE: The Accelerator Neutrino Neutron Interaction Experiment

- Cherenkov detector with Gd-loaded water
- Neutrino interactions with water
- Neutron production in neutrino interactions
- Demonstrate **new technologies**

More details:

- S. Gardiner's Cross Sections talk, Session 16
- E. Tiras's ANNIE poster

The SBN Program...

- Near/far oscillations with LArTPCs
- Details of neutrino-argon interactions
- Analysis tools development

Together with...

- MINERvA: Multi-GeV neutrino interactions
- MINOS+ & NOvA: Long-baseline oscillation measurements in $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$

Neutrino Program at Fermilab

MINERvA

Precision neutrino interactions

MINOS+

Pioneering long-baseline oscillations

NOVA Off-axis long-baseline v_e appearance

SBN Program

Short-baseline oscillations and new physics

DUNE

Precision long-baseline, CP violation

DEEP UNDERGROUND NEUTRINO EXPERIMENT

LBNF

More details in T. Yang's DUNE talk, Session 16

LBNF

Summary

Neutrinos and their oscillations provide a window into the Standard Model and beyond

Fermilab's neutrino beams provide a world-class platform for studying neutrino interactions & oscillations

Fermilab's diverse experimental neutrino program continues to be at the forefront of the our most compelling physics questions

Thank you!

and enjoy the User's Meeting Neutrino Sessions!