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Outline

• Grand challenges of accelerator and beam physics
• How to increase intensity
- Space charge issues
- Mitigations in FNAL complex
- Looking to the future – IOTA
- Instabilities

• How to improve beam quality
- Optical Stochastic cooling 
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Accelerator and Beam Physics Grand Challenges

• Grand challenge #1 (beam intensity): How do we increase 
beam intensities by orders of magnitude?

• Grand challenge #2 (beam quality): How do we increase beam 
phase-space density by orders of magnitude, towards the 
quantum degeneracy limit?

• Grand challenge #3 (beam control): How do we measure and 
control the beam distribution down to the level of individual 
particles?

• Grand Challenge #4 (beam prediction): How do we develop 
predictive “virtual particle accelerators”?
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Grand Challenge #1

• Grand challenge #1 (beam intensity): How do we increase 
beam intensities by orders of magnitude?

• Important for FNAL accelerator complex as we try to increase 
beam power in the future

• Why is this a challenge?
- Space charge - repulsive force between particles in a bunch
- Instabilities

• But first, a quick intro to linear focusing and resonances
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Linear focusing

• Dipole magnets to steer the 
beam

• Quadrupole magnets to focus 
the beam

• Quads focus in one plane and 
de-focus in the other
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Betatron tune
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• Alternating focusing means the beam oscillates as it goes 
around the ring

• Betatron tune - The number of oscillations the beam 
makes in one revolution

• For example, In the Fermilab Recycler, the horizontal tune is 
25.44 and the vertical tune is 24.39

• The fractional part is very important!
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Integer resonance

• Suppose the fractional part was zero i.e. the tune is an integer

• If we have an error in a dipole magnet
• Particle would receive same kick every revolution
- Eventually hit the beam pipe 
- Irradiate accelerator components
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Resonances – many more possible
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2nd order 3rd order

4th order 5th order
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Intensity issues from space
charge
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Space charge

• Inside a bunch, each there is a 
spread of tunes

• Space charge increases this 
spread with intensity
- More likely for particles to cross 

resonant lines
- Reduction in available tune space
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Difficult to compensate space 
charge

Actively trying to correct resonant lines in
FNAL complex
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Half integer correction in the FNAL booster

Before Correction After Correction

• The half integer resonance can be compensated using 
quadrupoles at appropriate locations

Early 
transmission

Late
transmission
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Third order compensation in FNAL Recycler

• Third order resonances can be compensated using sextupoles
at appropriate locations
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Before Correction After Correction

• Side-effects – May make other lines stronger
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Is there a better way?

• Compensating resonances is tricky
- May drive other resonances
- Multiple lines

• Is there a better way?
- Rethink how we design our accelerators
- Move away from linear focusing to a non linear approach

• Such an approach is being tested here at FNAL
- Nonlinear integrable optics
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Motivation for nonlinear integrable optics
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• We want to build an optical focusing system that 
A. Is strongly nonlinear = strong dependence of oscillation frequency on 

amplitude
B. Is 2D integrable and stable
C. Can be realized with magnetic fields in vacuum

• Mathematically, that means the system should
- Possess two integrals of motion
- Field potential satisfies the Laplace equation

• Practical benefits relevant to future HEP machines
- Reduced chaos in single-particle motion, e.g. helpful for space-charge 

suppression
- Higher beam current and brightness from strong immunity to collective 

instabilities via Landau damping
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Integrable Optics Test Accelerator (IOTA)
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Nonlinear integrable optics at IOTA

• Take a linear lattice and add a 
non-linear insert

• Recent run tested two inserts
- a quasi-integrable insert 

implemented as octupole string
- insert with 2 invariants, aka 

Danilov-Nagaitsev or Elliptic 
potential
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Stable beam on the integer
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Real-time video of IOTA beam
in NIO optics on integer resonance
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Instability Studies
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We see instabilities everyday operationally

Some are protected by feedback systems but not all

Important to study to develop mitigation strategies
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Instabilities Studies

• Electron cloud instabilities
- Proton bunch interacting with electrons inside

the vacuum chamber
- An issue during commissioning of Recycler

• Instabilities in the presence of strong space 
charge
- Prediction of new instability – Convective

instability (A. Burov)
- Observed in dedicated booster studies

• Dedicated experimental research program(ECA) 
beginning soon
- Excite instabilities in a controlled way
- Will explore how instabilities depend on space 

charge
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Instabilities – IOTA can help with that too!

• Non-linear integrable optics can help with coherent instabilities

• A coherent instability requires many of the particles to be working collectively

• The large tune spread from nonlinear integrable optics helps damp this

• Studies on-going at IOTA
- Observed factor of 2 increase in the threshold with octupole insert on
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Grand challenge #2

• Grand challenge #2 (beam quality): How do we increase beam 
phase-space density by orders of magnitude, towards the 
quantum degeneracy limit?
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Decrease beam size
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Improving beam quality with 
cooling
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SC: a powerful technique but limited to GHz BW
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1) We can increase beam 
brightness if we have 
granular information about 
particle ensemble.

2) Bandwidth (time resolution) 
of feedback system controls 
cooling rate

Simplified stochastic cooling system

ℒ ~
𝑓𝑁!𝑁"

4𝜋𝜎#∗𝜎%∗

1984 Nobel: van der Meer/Rubbia
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OSC extends the SC principle to optical bandwidth
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• Microwave hardware of SC replaced with 
undulators, lenses and amplifiers

• Potential for 103 – 104 increase in cooling rate 
over SC (~10 THz vs few GHz)

• OSC is at an intersection of fundamental beam-physics studies and 
pathfinding for operational systems in cooling, control and sensing

• Potential applications: direct cooling of high-energy hadrons (~0.25-6 TeV); 
perf. enhancement in med.-energy ring coolers; specialized SR-damping 
systems for light sources; advanced beam sensing and control

Energy exchange vs. delay
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OSC program @ IOTA takes a staged approach
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Phase I: Non-amplified OSC
• Explore OSC physics decoupled from technological 

challenges related to high optical gain
• Includes OSC studies with a single electron in IOTA
• OSC elements are nearing completion and systems 

are being integrated
• Experiments begin in ~Sep ’20 (world’s first demo)

Phase II (ECA): Amplified OSC and advanced 
control/sensing
• Develop a high-gain (1000x) amplified-OSC system 

at IOTA; leverages previous FNAL/DOE investments 
in Linac-Laser-Notcher system

• Develop specialized Machine-Learning systems and 
diffractive optics for advanced sensing and control

• Focus on conceptual and technological paths 
towards operational systems

• Amplified-OSC experiments beginning in 
~FY’22/23
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Summary

• Increasing intensity involves many challenges
- Space charge effects, instabilities are just a few examples

• Looking to the future
- IOTA is testing a novel method to redefine how we build our 

machines
- World’s first OSC demonstration this year
• New cooling method to improve beam quality

• Thanks to J. Eldred, J. Jarvis, S. Nagaitsev and A. Valishev for 
slides
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Backup slides


