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Outline

« Grand challenges of accelerator and beam physics

* How to increase intensity
- Space charge issues
- Mitigations in FNAL complex
- Looking to the future — IOTA
- Instabilities

* How to improve beam quality
- Optical Stochastic cooling
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Accelerator and Beam Physics Grand Challenges

« Grand challenge #1 (beam intensity): How do we increase
beam intensities by orders of magnitude?

« Grand challenge #2 (beam quality): How do we increase beam
phase-space density by orders of magnitude, towards the
guantum degeneracy limit?

« Grand challenge #3 (beam control): How do we measure and
control the beam distribution down to the level of individual
particles?

« Grand Challenge #4 (beam prediction): How do we develop
predictive “virtual particle accelerators”?
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Grand Challenge #1

« Grand challenge #1 (beam intensity): How do we increase
beam intensities by orders of magnitude?

» Important for FNAL accelerator complex as we try to increase
beam power in the future

« Why is this a challenge?
- Space charge - repulsive force between particles in a bunch
- Instabilities

 But first, a quick intro to linear focusing and resonances
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Linear focusing

 Dipole magnets to steer the
beam

« Quadrupole magnets to focus
the beam

« Quads focus in one plane and
de-focus in the other
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Betatron tune

* Alternating focusing means the beam oscillates as it goes
around the ring

 Betatron tune - The number of oscillations the beam
makes in one revolution

* For example, In the Fermilab Recycler, the horizontal tune is
25.44 and the vertical tune is 24.39
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* The fractional part is very important!
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Integer resonance

« Suppose the fractional part was zero i.e. the tune is an integer
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v, = integer

* |[f we have an error in a dipole magnet

» Particle would receive same kick every revolution
- Eventually hit the beam pipe
- Irradiate accelerator components
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Resonances — many more possible
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Intensity issues from space
charge

2= Fermilab
/10/20



Space charge

* Inside a bunch, each there is a
spread of tunes

« Space charge increases this
spread with intensity
- More likely for particles to cross
resonant lines =1 N
- Reduction in available tune space |

Qy Example measurements
In Booster
- effect of half-integer

resonance
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Difficult to compensate space
charge

Actively trying to correct resonant lines in
FNAL complex
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Half integer correction in the FNAL booster

* The half integer resonance can be compensated using
guadrupoles at appropriate locations
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Third order compensation in FNAL Recycler

* Third order resonances can be compensated using sextupoles
at appropriate locations

Before Correction After Correction
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Qx

 Side-effects — May make other lines stronger
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Is there a better way?

« Compensating resonances is tricky
- May drive other resonances
- Multiple lines

* |s there a better way?
- Rethink how we design our accelerators
- Move away from linear focusing to a non linear approach

« Such an approach is being tested here at FNAL
- Nonlinear integrable optics
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Motivation for nonlinear integrable optics

« We want to build an optical focusing system that
A. Is strongly nonlinear = strong dependence of oscillation frequency on
amplitude
B. Is 2D integrable and stable
C. Can be realized with magnetic fields in vacuum
« Mathematically, that means the system should
- Possess two integrals of motion
- Field potential satisfies the Laplace equation
» Practical benefits relevant to future HEP machines
- Reduced chaos in single-particle motion, e.g. helpful for space-charge
suppression

- Higher beam current and brightness from strong immunity to collective
instabilities via Landau damping
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Integrable Optics Test Accelerator (IOTA)

I S—

nﬂ);lullt a |

2% Fermilab

16 Rob Ainsworth | Accelerator Science 08/10/20



Nonlinear integrable optics at IOTA

 Take a linear lattice and add a

non-linear insert T e — |
g 15000 1Y ? _
3 N g
. g ’/' 115 5
* Recent run tested two inserts gommor N S 2
- a quasi-integrable insert ol L 1L G
implemented as octupole string 0 ,.|||, | _|I|.. .
0 0.5 1 1.5 2

- insert with 2 invariants, aka ()

Danilov-Nagaitsev or Elliptic
potential

:| Nonlinear insertions
W Bending magnets
| Quadrupoles

| Sextupole correctors

[N RF cavity

I Combined dipole and skew-quad correctors
== Horizontal correctors
= Vertical correctors

Horizontal kicker

== Vertical kicker
— Electrostatic BPMs (position, turn-by-turn)

M Sync. light monitors (position and shape)
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Stable beam on the integer

Real-time video of IOTA beam
in NIO optics on integer resonance
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Instability Studies

We see instabilities everyday operationally
Some are protected by feedback systems but not all

Important to study to develop mitigation strategies
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Instabilities Studies

» Electron cloud instabilities

- Proton bunch interacting with electrons inside
the vacuum chamber

- An issue during commissioning of Recycler
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* Instabilities in the presence of strong space
charge " \ ]
- Prediction of new instability — Convective ) \ Y]
instability (A. Burov) L %
- Observed in dedicated booster studies o200 TR0

protons

» Dedicated experimental research program(ECA)
beginning soon

- Excite instabilities in a controlled way

. . - Kicker BPM1 BPM2
- Will explore how instabilities depend on space —— |
charge board
Amplifiers
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Instabilities — IOTA can help with that too!

* Non-linear integrable optics can help with coherent instabilities
« A coherent instability requires many of the particles to be working collectively
» The large tune spread from nonlinear integrable optics helps damp this

 Studies on-going at IOTA
- Observed factor of 2 increase in the threshold with octupole insert on
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Grand challenge #2

« Grand challenge #2 (beam quality): How do we increase beam
phase-space density by orders of magnitude, towards the
guantum degeneracy limit?

fN,N?
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Decrease beam size

L ~
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Improving beam quality with
cooling
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SC: a powerful technique but limited to GHz BW

before

fNpN?

L 4oy oy,”
1984 Nobel: van der Meer/Rubbia

1) We can increase beam
brightness if we have
granular information about
particle ensemble.

microwave
amplifier

correction 2y Bandwidth (time resolution)
of feedback system controls

Simplified stochastic cooling system _
cooling rate
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OSC extends the SC principle to optical bandwidth

particle bypass bypass
dela_y

10

- Energy exchange vs. delayl.:
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pickup optics & kicker
undulator amplifier undulator

(WA) pray-3

X position (mm)

-10

Microwave hardware of SC replaced with | I
undulators, lenses and amplifiers Wit ,, 1

Potential for 103 — 104 increase in cooling rate
over SC (~10 THz vs few GHz)

« OSC is at an intersection of fundamental beam-physics studies and
pathfinding for operational systems in cooling, control and sensing
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* Potential applications: direct cooling of high-energy hadrons (~0.25-6 TeV);
perf. enhancement in med.-energy ring coolers; specialized SR-damping
systems for light sources; advanced beam sensing and control

Z = 87 v v 0 S0 e
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OSC program @ IOTA takes a staged approach
Phase I: Non-amplified OSC

Explore OSC physics decoupled from technological

challenges related to high optical gain

Includes OSC studies with a single electron in IOTA

OSC elements are nearing completion and systems
are being integrated

Experiments begin in ~Sep '20 (world’s first demo)

Phase Il (ECA): Amplified OSC and advanced
control/sensing

26

Develop a high-gain (1000x) amplified-OSC system
at IOTA; leverages previous FNAL/DOE investments
in Linac-Laser-Notcher system

Develop specialized Machine-Learning systems and
diffractive optics for advanced sensing and control
Focus on conceptual and technological paths
towards operational systems

Amplified-OSC experiments beginning in
~FY’22/23
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Summary

* Increasing intensity involves many challenges
- Space charge effects, instabilities are just a few examples

 Looking to the future

- IOTA is testing a novel method to redefine how we build our
machines

- World’s first OSC demonstration this year
* New cooling method to improve beam quality

« Thanks to J. Eldred, J. Jarvis, S. Nagaitsev and A. Valishev for
slides

2= Fermilab

27 Rob Ainsworth | Accelerator Science 08/10/20



Backup slides
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