Fermilab is a global leader in Muon Physics

The Fermilab Muon Campus

2 of the most powerful and promising tests of the SM
The Fermilab Muon g-2 experiment
Anomalous Magnetic Moment

Muon magnetic moment: \[\mu = g_\mu \frac{e}{2m} \vec{s} \]

The anomalous magnetic moment:

\[a_\mu \equiv \frac{g_\mu - 2}{2} \]

Dirac theory predicts \(g=2 \)

Quantum fluctuations give rise to \(a_\mu \)

Entire theory encoded into \(g-2 \)

A powerful precision test of SM validity
The α_μ discrepancy

BNL E821 measured α_μ to 540 ppb
- Discrepancy with SM

$\alpha_\mu^{\text{exp}} - \alpha_\mu^{\text{SM}} = (27.9 \pm 7.6) \times 10^{-10}$

Muon g-2 Theory Initiative
https://muon-gm2-theory.illinois.edu

Full re-evaluation of SM value
The discrepancy stands at 3.7σ

Fermilab E989 aims to improve precision on α_μ^{exp} by x4
The g-2 experiment at Fermilab

Muon g-2 storage ring, moved from BNL
The g-2 experiment at Fermilab

3.1 GeV/c muons injected in storage ring
Highly longitudinally polarized
Muon spin precesses in 1.45 T field
Spin precession

Muon spin precession inside the magnetic storage ring

Anomalous precession due to $g \neq 2$

Anomalous precession frequency:
(idealized expression: perfect motion, field, “magic momentum”)

$$\vec{\omega}_c = -\frac{e \vec{B}}{m \gamma}$$

$$\vec{\omega}_s = -\frac{geB}{2m} - (1 - \gamma) \frac{eB}{m \gamma}$$

$$\vec{\omega}_a \equiv \vec{\omega}_s - \vec{\omega}_c = a_\mu \frac{e \vec{B}}{m}$$

Need measurement of ω_a, B
Precession signal

Self-analyzing decay: highest-E e^+ emitted preferentially along μ^+ spin

$$\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$$

ω_a extracted from fit to calorimeter signal:

$$N(t) = N_0 e^{-t/\tau} [1 + A \cos(\omega_a t + \varphi)]$$

(Muon decay) \times (Oscillation due to precession)
Magnetic field

Monitored with proton NMR probes

- Probes pulled in trolley for measurement in muon region (~3 days)
- Fixed probes for interpolation

Field maps from multipole decomposition:

\[B(r, \theta) = B_0 + \sum_{n=0}^{4} \left(\frac{r}{r_0} \right)^n \left[a_n \cos(n\theta) + b_n \sin(n\theta) \right] \]

Field map to be **convoluted** with muon distribution

Azimuthally averaged, 250 ppb contours
Muon distribution from trackers

Straw trackers reconstruct muon distribution, determine complex beam dynamics

Station 12 - 3.50 us

Entries: 61187
Mean: -4.912
Std Dev: 24.46
Underflow: 0
Overflow: 0
Integral: 8.11e+04
Run1 ω_α analysis

Simplistic 5-parameter fit:

$$N(t) = N_0 e^{-t/\tau} [1 + A \cos(\omega_\alpha t + \varphi)]$$

Realistic, with beam dynamics:

$$N(t) = N_0 e^{-t/\tau_p} [1 + A_{cbo}(t) \cos(\omega_{cbo} t + \phi_{cbo}(t))] \times N_{2cbo}(t)$$
$$\times [1 + A_{cbo} \cdot e^{-t/\tau_{cbo}} \cdot \cos(\omega_{cbo} t + \phi_0)]$$
$$\times [1 + A_{vw} \cdot e^{-t/\tau_{vw}} \cdot \cos(\omega_{vw} t + \phi_{vw})]$$
$$\times [1 - K_{loss} \int_{t_0}^{t} e^{t/\tau} L(t) dt]$$

$$A_{cbo}(t) = A(1 + A_{cbo-A} e^{-t/\tau_{cbo}} \cos(\omega_{cbo} t + \phi_{cbo-A}))$$
$$\phi_{cbo}(t) = \phi_0 + A_{cbo-\phi} e^{-t/\tau_{cbo}} \cos(\omega_{cbo} t + \phi_{cbo-\phi})$$
$$N_{2cbo}(t) = (1 + A_{2cbo-N} e^{-2t/\tau_{cbo}} \cos(2\omega_{cbo} t + \phi_{2cbo-N}))$$

D. Sweigart URA Thesis Award
Current status

Up to 8x BNL raw statistics collected so far

Run3 cut short due to pandemic, planning to resume in fall 2020

First results from Run1 expected in few months

\[\approx \text{BNL statistics} \]
Run1 ω_α analysis

- 6 independent analysis teams
 - Different algorithms, sensitivities, reconstructions

Agreement fully within statistically allowed variance

- Similarly great agreement between independent analysis teams for field measurement
Run1 result expected soon!

- Tremendous work done on systematic cross-checks
- Run1 result, highly anticipated by global community, is expected in few months!
- First cross-check to BNL discrepancy after nearly 2 decades
- Hugely important for future prospects of the field
The Mu2e Experiment

- Scheduled to start after Muon g-2
- Currently in construction phase
Any observation of Charged-Lepton Flavor Violation (CLFV) would be unambiguous evidence of New Physics

The charged-lepton analog to neutrino oscillations

- Neutrino oscillations
- Lepton flavor violated!

- Mixing between charged leptons: never observed
 - Powerful probe of flavor models
 - Especially well motivated given ν-oscillations, LFU-violation
The Mu2e search

Coherent conversion $\mu \to e$ in the field of a nucleus

$$\mu^- + A(Z,N) \to e^- + A(Z,N)$$

Clean experimental signature

- mono-energetic e^- – for Al:

$$E_{\mu e}(\text{Al}) = m_\mu - E_b - E_{\text{rec}} = 104.97 \text{ MeV}$$

Current limit (SINDRUM-II, 90% CL):

$$R_{\mu e} = \frac{\mu^- + N \to e^- + N}{\mu^- + N \to \text{nuclear capture}} < 7 \times 10^{-13}$$

Mu2e aims to improve on $R_{\mu e}$ by 4 orders of magnitude

A vast increase in sensitivity covering unconstrained phase space
Physics reach

\[\mathcal{L}_{\text{CLFV}} = \frac{m_\mu}{(1 + \kappa)} \Gamma^2 \bar{\mu} R \sigma_{\mu \nu} e_L F^{\mu \nu} + \frac{\kappa}{(1 + \kappa)} \Gamma^2 \bar{\mu} L \gamma_\mu e_L (\bar{u}_L \gamma^\mu u_L + \bar{d}_L \gamma^\mu d_L) \]

\(\Gamma \): effective mass parameter

\(\kappa \): relative strength of loop- and contact-dominated terms

Mu2e improves sensitivity in all NP scenarios

Effective mass scale reach up to \(10^4 \) TeV
Mu2e solenoids

System of 3 functional solenoid units

8 GeV pulsed proton beam, ~7e12 protons/s on W production target

Efficient collection and transport: 10^{10} stopped muons/s on Al stopping target → World’s most intense muon beam
Mu2e solenoids: Detector

Detector system:
Straw tracker and calorimeter
Identify 105 MeV conversion electron
Reject backgrounds from conventional processes

Background:
Standard muon decay-in-orbit (DIO)
Straw tracker

Hole-in-center annular design:
Detector blind to nearly all backgrounds and remnant beam

Resolution <180 keV @ 105 MeV

Performance validated with prototypes
EM Calorimeter

1348 CsI crystals, SiPM readout
Redundant E, position, timing information
Prototype in Frascati demonstrated
\[\sigma_E \sim 7\%, \ \sigma_t \sim 150 \text{ ns}, \ \text{well within spec} \]

Atanov et al, arXiv:1801.02237
Cosmic backgrounds

Cosmic events may produce 105 MeV e

Cosmic Ray Veto system encases DS and downstream TS

4 layers of extruded polystyrene Under construction in UVA
Background budget

Expected total number of background events from each source, over entire Mu2e:

3 years at 1.2×10^{20} p/yr
(8 kW beam power)

<table>
<thead>
<tr>
<th>Background process</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmic ray muons</td>
<td>$0.21 \pm 0.02 \pm 0.055$</td>
</tr>
<tr>
<td>Intrinsic</td>
<td></td>
</tr>
<tr>
<td>DIO</td>
<td>$0.14 \pm 0.03 \pm 0.11$</td>
</tr>
<tr>
<td>RMC</td>
<td>$0.000^{+0.004}_{-0.000}$</td>
</tr>
<tr>
<td>Prompt, late-arriving</td>
<td></td>
</tr>
<tr>
<td>RPC</td>
<td>$0.021 \pm 0.001 \pm 0.002$</td>
</tr>
<tr>
<td>Muon DIF</td>
<td>< 0.003</td>
</tr>
<tr>
<td>Pion DIF</td>
<td>$0.001 \pm < 0.001$</td>
</tr>
<tr>
<td>Beam electrons</td>
<td>$(2.1 \pm 1.0) \times 10^{-4}$</td>
</tr>
<tr>
<td>Antiproton-induced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0.04 \pm 0.001 \pm 0.02$</td>
</tr>
</tbody>
</table>

Total 0.41 ± 0.03 (stat+syst)

Expect <0.5 background event in 3 years
Any observation will be strong evidence for CLFV

08/11/2020
Sensitivity

$\text{5}\sigma$ discovery sensitivity at $R_{\mu e} = 2 \times 10^{-16}$

orders of magnitude beyond currently constrained

Single-event sensitivity at $R_{\mu e} = 3 \times 10^{-17}$

Real discovery potential
Solenoids - progress

- Production Solenoid (PS)
- Detector Solenoid (DS)
- Transport Solenoid (TSu, TSD)

Fully tested and assembled @ HAB

Coil layer compaction

Post VPI

DS

DS10 shell
Mu2e outlook

- Begin installation in 2021
- Physics data beginning 2024
- Aim for 10^3 improvement on $R_{\mu e}$ by 2025
- LBNF/PIP-II accelerator shutdown
- By end of decade: complete data taking, improve 10^4 on $R_{\mu e}$

Intense effort over next years as project nears completion

Global program may well produce first observations of CLFV this decade
Defining the Next Decade

Mu2e-II, evolution to Mu2e with PIP-II

- Improving sensitivity by another order of magnitude
- Powerful in any scenario

Many more proposals for physics at the Muon Campus in the PIP-II era, integrated into the Snowmass process

$R_{\mu e}$ Z-dependence to study structure of new physics
Summary

Fermilab is a global leader in Muon Physics

Muon g-2
Highly anticipated Run1 result out soon, full result in few years

Mu2e
Large increase in sensitivity, well motivated physics, real discovery potential

Results will be decade-defining for Fermilab and entire field
Lattice HVP: BMW 2020

![Graph showing lattice HVP results for different collaborations and years, with a note indicating 'No New Physics'.]
Lepton moments

\[
\alpha_\ell(\text{Exp}) - \alpha_\ell(\text{SM})
\]

Sensitivity to heavy new physics:

\[
a_\ell^{\text{NP}} \sim \frac{m_\ell^2}{\Lambda^2}
\]

\[
(m_\mu/m_e)^2 \sim 4 \times 10^4
\]

plot by Shaun Lahert

BNL E821

Harvard'08
Beam to Muon Campus
• transform from μ-rest frame to lab frame yields higher energy positrons when emitted along μ-direction (i.e. spin along momentum)

• transform from μ rest frame to lab frame yields lower energy positrons when emitted opposite μ-direction (i.e. spin opposite momentum)
CLFV

Ordinary muon decay conserves lepton flavor:

$$\mu^- \rightarrow e^- \bar{v}_e \nu_\mu$$

\[
\begin{array}{cccc}
\text{L}_\mu & 1 & 0 & 0 & 1 \\
\text{L}_e & 0 & 1 & -1 & 0 \\
\end{array}
\]

Violation of charged lepton flavor “forbidden” in SM

Loophole: neutrino oscillations
- Some CLFV must occur
- But rate is vanishingly small, $<10^{-50}$

Any CLFV observation would be evidence that rate is enhanced by new physics
- A search for rare forbidden processes at the Intensity Frontier
- Complementarity and synergy with LHC

- The charged-lepton analog to neutrino oscillations!
Complementarity between searches

<table>
<thead>
<tr>
<th></th>
<th>AC</th>
<th>RVV2</th>
<th>AKM</th>
<th>δLL</th>
<th>FBMSSM</th>
<th>LHT</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 - \bar{D}^0$</td>
<td>★★</td>
<td>⚫</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
</tr>
<tr>
<td>ϵ_K</td>
<td>★</td>
<td>★★★</td>
<td>★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
</tr>
<tr>
<td>$S_{\psi\phi}$</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
</tr>
<tr>
<td>$S_{\phi K_S}$</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$A_{\text{CP}} (B \to X_s \gamma)$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>$A_{T,S} (B \to K^* \mu^+ \mu^-)$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>$A_9 (B \to K^* \mu^+ \mu^-)$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>?</td>
</tr>
<tr>
<td>$B \to K^{(*)} \nu \bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$B_s \to \mu^+ \mu^-$</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$K^+ \to \pi^+ \nu \bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>$K_L \to \pi^0 \nu \bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>$\mu \to e \gamma$</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>$\tau \to \mu \gamma$</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>$\mu + N \to e + N$</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
</tr>
<tr>
<td>d_n</td>
<td>★★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★★</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
</tr>
<tr>
<td>d_e</td>
<td>★★★</td>
<td>★★★</td>
<td>★★</td>
<td>★</td>
<td>★★★</td>
<td>★</td>
<td>★★★</td>
</tr>
<tr>
<td>$(g - 2)_\mu$</td>
<td>★★★</td>
<td>★★★</td>
<td>★★</td>
<td>★★★</td>
<td>★★★</td>
<td>★</td>
<td>?</td>
</tr>
</tbody>
</table>

W. Altmanshofer et al. 0909.1333v2
Several prompt background sources could give 105 MeV e

Characteristic: pion lifetime 26 ns

Concept: Simply wait for prompt bkgds to decay

- Delayed signal window by 700 ns
- Muonic Al lifetime 864 ns
- Proton pulse period 1695 ns, from Fermilab Delivery Ring

Time structure eliminates prompt backgrounds

Example: Radiative pion capture

$$\pi^- N \rightarrow \gamma N$$

$$\gamma \rightarrow e^- e^+$$
The COMET detector has an extra curved magnet acting as an electron spectrometer.
CLFV and g-2

Loop terms:

\[\mathcal{L}_{\text{CLFV}} = \frac{m_\mu}{(1 + \kappa) \Lambda^2} \bar{\mu} R \sigma_{\mu\nu} e_L F^{\mu\nu} \]

\[\mathcal{L}_{g-2} \supset \frac{m_\mu}{\Lambda^2} \bar{\mu} R \sigma_{\mu\nu} \mu_L F^{\mu\nu} + h.c. . \]

Loop operator relates to Muon g-2

- The CLF-violating part of any NP that modifies g-2 would give Mu2e events
- MEG already constrains \(\Lambda > 1000 \) TeV, or NP not very CLF-violating
- For the given \(\Delta a_\mu \):

\[B(\mu^+ \rightarrow e^+ \gamma) \simeq 6 \times 10^{-3} |\epsilon_{e\mu}|^2 \]

William J. Marciano, Toshinori Mori, and J. Michael Roney
https://doi.org/10.1146/annurev.nucl.58.110707.171126

Flavor violating suppression factor