

Measurement of Single Electron Events in MicroBooNE^[1]

Ivan Caro Terrazas, on behalf of the MicroBooNE Collaboration icaro@colostate.edu Colorado State University

MicroBooNE and the Low Energy Excess

- -> MicroBooNE is a Liquid Argon Time Projection Chamber (LArTPC) neutrino detector located along the Booster Neutrino Beam at Fermilab
- -> Primary physics goal:
- LArTPC R&D
- ν Ar Cross sections
- Investigate and characterize the nature of the MiniBooNE excess Data (stat err.)
 ν_e from μ*/.
- -> MicroBooNE is exploring two hypotheses for the excess of EM events:
- ν_{ρ} excess
- Excess of photons

-> The ν_e excess is studied by relying on two exclusive and orthogonal channels:

- -> Combined channels match MiniBooNE signal: $\nu_e + C \rightarrow 1eXp0\pi$ where: $X \ge 0$
- -> The $1e0p0\pi$ channel consists of a single electron with no visible protons or pions
- -> Single EM shower search
- -> Constrain uncertainty related to proton reconstruction, multiplicity and kinematics
- -> Constrain event migration: $1eNp0\pi \leftrightarrow 1e0p0\pi$

Single Shower Analysis Overview

- -> Reconstruct event tracks and showers using Pandora [3]
- -> Candidate neutrino interactions (green and red) and obvious cosmic activity (orange) are tagged
- -> Prompt scintillation light coincident in-time with beam is used to select neutrino (green)

Single Shower Topology

BDT Training

- -> A single Boosted Decision Tree (BDT) is trained on a dedicated true low energy ν_e sample and a π^0 + cosmic enhanced sample for background events
- -> 28 BDT training variables: shower dE/dx most important training variable

- -> Dominated by Cosmic and BNB backgrounds
- -> Single shower topology: one contained shower within the fiducial volume with zero contained tracks
- -> Other quantities, such as distance or shower angle w.r.t. nearest cosmic, provide further background rejection

Single Shower Selection Performance

- -> Data unblinded for energy above 0.9 GeV
- -> Expected **purity of ≈ 47**% for electron neutrinos in the 0-2 GeV reconstructed energy range with an **efficiency of** ≈ **10%**
- -> Scaling to the full dataset (1.25E21 POT), we expect **19** $1e0p0\pi$ selected events

Towards the Low Energy Excess

- -> Sideband Strategy: opened events having a reconstructed visible energy > 0.9 GeV or a BDT score < 0.4, away from **signal** region
- -> Useful for validation studies:
- Validate BDT input variables and BDT score at high energies
- Validate BDT response over energy spectrum

- -> Selection of single shower events in the high energy region
- -> Display of neutrino induced single shower event

Summary

- -> Presented ongoing measurement of ν_e single shower events in the Booster Neutrino Beamline with the MicroBooNE detector
- -> First measurement of single shower events in a LArTPC

-> Simulation in agreement with data measurement

- -> 19 single shower events are expected in the full open dataset with a purity $\approx 47\%$ and efficiency $\approx 10\%$ at selecting ν_e events
- -> Framework good at selecting truth $1e0p0\pi$ events in the high energy sideband region
- -> Validation of analysis on sideband shows good performance
- -> Looking forward towards a full dataset unblinding!

- [1] Search for Electron Neutrinos in Multiple Topologies with the MicroBooNE Experiment (Public Note) MICROBOONE-NOTE-1085-PUB
- [2] Significant Excess of Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment PRL 121, 221801 (2018)
- [3] The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector EPJC 78, 182 (2018)

