The NOvA Experiment

NOvA [1] is a long-baseline neutrino oscillation experiment aiming to determine:

- Neutrino mass hierarchy
- Neutrino oscillation parameters
- CP violating phase \(\delta_{CP} \)
- Searching for sterile neutrinos and other

Beyond the Standard Model physics models

Feldman-Cousins Unified Approach

Compare data and prediction for a given set of oscillation parameters, using a negative log-likelihood and relate it to a chi-square distribution \(\chi^2 = -2 \log L(\theta) \).

Build a test statistic \(\Delta \chi^2 = \chi^2(\theta) - \chi^2(\theta_{best}) \) comparing the best fit point \(\theta_{best} \) to the best fit for a given set of parameters \(\theta \).

Compute a \(p \)-value analytically (Wilks’ theorem) and derive a significance.

Generate and fit thousands of pseudoexperiments to empirically build a \(\Delta \chi^2 \) distribution for each point of the parameter space.

Compute the fraction of pseudoexperiments with a \(\Delta \chi^2 \) larger than the one observed in data.

Compute a significance from that \(p \)-value.

The generation and fitting of millions of pseudoexperiments is an ideal problem for massive parallel computing.

NOvA’s Feldman-Cousins framework can be containerized and ported to High Performance Computing platforms [4].

Improvements were developed to fully leverage NERSC’s computing power, like advanced domain decomposition using Message Passing Interface (MPI):

DIY block-parallel environment and tools [5] are used to efficiently distribute the workload across \(10^6 \) parallel processes.

The Feldman-Cousins unified approach is a computationally expensive Frequentist approach to determine statistically accurate confidence intervals for parameters of interest.

Empirically built \(\Delta \chi^2 \) distributions can be skewed to the left or to the right of the standard distribution, therefore respectively increasing or decreasing NOvA’s physics sensitivities compared to Gaussian assumptions.

See Erika’s poster 3 flavor neutrino oscillations in NOvA and Latest results from the NOvA experiment Thursday morning.

References

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery Through Advanced Computing (SciDAC) program.