

A_4 Modular Symmetry on Linear Seesaw with Leptogenesis

Mitesh Kumar Behera^a, Subhasmita Mishra^b, Shivaramakrishna Singirala^c, Rukmani Mohanta^a University of Hyderabad^a, Hyderabad-50046, India, IIT Hyderabad^b, Kandi-502285, India, IIT Indore^c, Simrol, Indore-453552, India E-mail: miteshbehera1304@gmail.com^a, subhasmita.mishra92@gmail.com^b, krishnas542@gmail.com^c, rukmani98@gmail.com^a

ABSTRACT

- The ingenuity of this work is to build a model that explains neutrino oscillation data under A_4 Modular symmetry making usage of Linear Seesaw mechanism along with comment on Leptogenesis.
- The Standard Model (SM) is extended by three RH neutrinos (N_{Ri}) and three Sterile neutrinos (S_{Li}) along with one flavon field which eliminates unwanted terms in the Lagrangian and keeping the model consistent.

INTRODUCTION

• A_4 Modular Symmetry: A_4 modular symmetry minimizes the use of flavon fields and in addition the modular group is the group of linear fractional transformation acting on a complex variable τ .

$$\tau \longrightarrow \gamma \tau = \frac{a\tau + b}{c\tau + d}$$
, where $a, b, c, d \in \mathbb{Z}$ and $ad - bc = 1$, $Im[\tau] > 0$

• The Yukawa couplings: $\mathbf{Y} = (y_1, y_2, y_3)$, transforming as a triplet under A_4 with modular weight $k_I = 2$ can be expressed in terms of Dedekind eta-function $\eta(\tau)$ and its derivative, given as

$$\eta(\tau) = e^{\frac{i\pi\tau}{12}} \prod_{n=1}^{\infty} (1 - e^{2in\tau\pi})$$

where, $\tau \in H$, $x = e^{2i\pi\tau}$, |x| < 1 (H represents upper half plane)

• Linear Seesaw: The light neutrino mass matrix under the linear seesaw in the flavor basis of (ν_L, N_R, S_L^c) is expressed as

$$\mathbb{M} = \begin{pmatrix} 0 & M_D & M_{LS} \\ M_D^T & 0 & M_{RS} \\ M_{LS}^T & M_{RS}^T & 0 \end{pmatrix}$$

The resulting mass formula

$$m_{\nu} = M_D M_{RS}^{-1} M_{LS}^T + \text{transpose} \tag{1}$$

Model Framework

- The particle content of the model and their Quantum nos are given in Table 1.
- Thus, one can write the interaction Lagrangian for the Charged Lepton, Dirac, Pseudo-Dirac, Mixing of Heavy fermions $N_R \& S_L$ as given in Eqns. 2, 3, 4, 5 respectively

$$\mathcal{L}_{M_{\ell}} = y_{\ell}^{ee} \overline{L}_{e_L} H e_R + y_{\ell}^{\mu\mu} \overline{L}_{\mu_L} H \mu_R + y_{\ell}^{\tau\tau} \overline{L}_{\tau_L} H \tau_R + \text{h.c.},$$
(2)

$$\mathcal{L}_D = \alpha_D \overline{L}_{e_L} \widetilde{H}(\mathbf{Y} N_R)_1 + \beta_D \overline{L}_{\mu_L} \widetilde{H}(\mathbf{Y} N_R)_{1'} + \gamma_D \overline{L}_{\tau_L} \widetilde{H}(\mathbf{Y} N_R)_{1''} + \text{h.c.}, \tag{3}$$

$$\mathcal{L}_{LS} = \left[\alpha_D' \overline{L}_{e_L} \widetilde{H} (\mathbf{Y} S_L^c)_1 + \beta_D' \overline{L}_{\mu_L} \widetilde{H} (\mathbf{Y} S_L^c)_{1'} + \gamma_D' \overline{L}_{\tau_L} \widetilde{H} (\mathbf{Y} S_L^c)_{1''} \right] \frac{\rho^3}{\Lambda^3} + \text{h.c.}, \tag{4}$$

$$\mathcal{L}_{M_{RS}} = \left[\alpha_{SN} \mathbf{Y} (\overline{S_L} N_R)_{\text{symm}} + \beta_{SN} \mathbf{Y} (\overline{S_L} N_R)_{\text{Anti-symm}}\right] \rho + \text{h.c.}$$
(5)

Fields	e_R	μ_R	$ au_R$	L_L	N_R	S_L	H	ρ
$SU(2)_L$	1	1	1	2	1	1	2	1
$U(1)_Y$	-1	-1	-1	-1/2	0	0	1/2	0
$U(1)_{\chi}$	1	1	1	1	1	2	0	1
A_4	1	1'	1"	1,1'',1'	3	3	1	1
k_I	1	1	1	1	-1	1	0	0

Table 1: Particle content of the model and their charges under $SU(2)_L \times U(1)_Y \times U(1)_X \times A_4$ where k_I is the number of modular weight.

MASS MATRIX AND MIXING ANGLES EXPRESSION

$$M_{\ell} = \begin{pmatrix} m_e & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix}, \ M_D = \frac{v}{\sqrt{2}} \begin{pmatrix} y_1 \alpha_d & y_3 & y_2 \\ y_2 & y_1 \beta_d & y_3 \\ y_3 & y_2 & y_1 \gamma_d \end{pmatrix}, \ M_{LS} = \frac{vv_{\rho}^3}{\sqrt{2}\Lambda^3} \begin{pmatrix} y_1 \alpha_d & y_3 & y_2 \\ y_2 & y_1 \beta_d & y_3 \\ y_3 & y_2 & y_1 \gamma_d \end{pmatrix}$$

$$M_{RS} = \frac{v_{\rho}}{\sqrt{2}} \left[\alpha_{NS} \begin{pmatrix} 2y_1 & -y_3 & -y_2 \\ -y_3 & 2y_2 & -y_1 \\ -y_2 & -y_1 & 2y_3 \end{pmatrix} + \beta_{NS} \begin{pmatrix} 0 & y_3 & -y_2 \\ -y_3 & 0 & y_1 \\ y_2 & -y_1 & 0 \end{pmatrix} \right]$$

$$\sin^2 \theta_{13} = |U_{13}|^2, \quad \sin^2 \theta_{23} = \frac{|U_{23}|^2}{1 - |U_{13}|^2}, \quad \sin^2 \theta_{12} = \frac{|U_{12}|^2}{1 - |U_{13}|^2}. \ [U \ \text{diagonalizes matrix} \ (1)]$$

RESULTS

Figure 1: These plots express mixing angles $\sin^2 \theta_{12}$ (extreme left), $\sin^2 \theta_{13} \& \sin^2 \theta_{23}$ (middle) versus $\sum m_i$ [eV], J_{CP} vs Dirac CP phase (δ_{CP}) (extreme right).

LEPTOGENESIS

• To incorporate leptogenesis, a higher dimensional mass term is introduced for the Majorana fermion (N_R) as in eqn.(6), prompting a small mass splitting between the heavy fermions, which lead the way to observe lepton asymmetry, where α_R is the coupling.

$$L_M = -\alpha_R Y \overline{N_R^c} N_R \frac{\rho^2}{\Lambda} + \text{H.c.}, \tag{6}$$

• This mass splitting generates lepton asymmetry through resonant leptogenesis for benchmark values $|y_1| = 1$, $|y_2| = 0.5$, $m_{\nu} = 0.07 \, \text{eV} \, \& \, \Delta M = 5.3 \times 10^{-4} \, \text{GeV}$ we obtain $\epsilon_{CP} = 9.5 \times 10^{-6}$.

CONCLUSION

- We have studied the linear seesaw mechanism under modular A_4 symmetry along with the $U(1)_{\chi}$ global symmetry, where these symmetries forbid unnecessary terms and restrict structures of relevant Yukawa interactions.
- We were able to successfully explain the observed neutrino oscillation data (mixing angles and the mass-squared differences) as well as the cosmological bound on neutrino masses i.e., $\Sigma m_i \leq 0.12$ eV.
- Due to a small mass splitting generated by the presence of higher dimension mass term helps to observe a nonzero CP asymmetry and lepton asymmetry whose order is $\approx 10^{-10}$, which successfully elucidate the current baryon asymmetry.
- For more details please refer paper M. K. Behera, S. Mishra, S. Singirala and R. Mohanta *Implications of A*⁴ *modular symmetry on Neutrino mass, Mixing and Leptogenesis with Linear Seesaw*, arXiv:2007.00545 [hep-ph].