

The future of ANNIE in 10 minutes

New Perspectives 07/20/2020-07/21/2020

Michael Nieslony on behalf of the ANNIE collaboration JOHANNES GUTENBERG UNIVERSITÄT MAINZ

ANNIE

The Accelerator Neutrino Neutron Interaction Experiment

- **Gd-loaded water Cherenkov detector** placed 100m downstream from target of the Booster Neutrino Beam (BNB) at Fermilab
- Measurement: final state neutron multiplicity & CCQE cross-section in water
- Test of **new technologies** in the fields of fast photosensors (LAPPDs) and detection media (Gd-loaded water/water-based Liquid Scintillators)

• Neutrino cross-section in water:

Minimize systematic uncertainty in long-baseline neutrino oscillation studies

• Neutron multiplicity:

Help model atmospheric background for DSNB & proton decay searches

The past, present and future of ANNIE

07/20/2020

The past, present and future of ANNIE

• ¹³⁷Cs standard candle

• 60 PMTs (veto) & Gd-loaded

scintillator Fiducial volume (NCV)

The future of ANNIE

with 132 PMTs done

Phase II measurement: v_{μ} CCQE event

LAPPD: Large Area Picosecond Photo Detector

- 20 cm x 20 cm photodetector with intrinsic position resolution (mm-cm scale)
- Microchannel plate structure with resistive & emissive coating + microstrip anode readout
- Fast detection capabilities (time resolution ~60 ps)
- ANNIE has 5 LAPPDs at hand, characterization ongoing at Fermilab test stand
- Both angular and spatial resolution profit substantially from using 5 LAPPDs

The present: Getting ready for LAPPD deployment

LAPPD test stand at Fermilab

1) Characterization of the LAPPDs

- Systematic tests of all 5 LAPPDs at dedicated facility at Fermilab
- Q.E., gain & timing calibration scans:
 - Movable & motorized LED/laser setup
 - Automated scans over the whole surface

The present: Phase II - Detector construction

Gadolinium loading

Custom water purification system developed by UC Davis collaborators:

"V. Fischer et. al, "Development of an ion exchange resin for gadoliniumloaded water"

JINST15 (2020) 07 P07004

ANNIE reached its nominal Gd-loading on December 24th (2019) !

07/20/2020

The present: Phase II - Detector commissioning

Calibration campaigns

LED calibration campaign

- Track transparency of the detector
- PMT gain calibration
- PMT cable delay corrections

AmBe neutron calibration

Evaluate efficiency of neutron captures

→ Leon Pickard, "First Neutron Capture Results In ANNIE"

Time profile of beam commissioning neutrino candidate

PMT hits closely clustered in time

ANNIE observed first neutrino event candidates

Event display of beam commissioning neutrino candidate

The past, present and future of ANNIE

Future: Phase III

Further extensions to the detector:

- More than five LAPPDs
- \rightarrow multi-track reconstruction

Testbed for new technologies:

• Water-based liquid scintillator volume in ANNIE

07/20/2020

scintillator Fiducial volume (NCV)

The future: Phase III - Water-based Liquid Scintillator

- Water-based Liquid Scintillator (WbLS): Novel detection medium for which Liquid Scintillator droplets are dissolved in water
- The medium has the following advantages:
 - Directionality & kinematic reconstruction (Cherenkov)
 - High light yield & calorimetric reconstruction (scintillation)
 - Charged particle detection below Cherenkov threshold (protons)
 - High transparency + low cost of water
 - Tunable liquid scintillator concentration, isotope loading

WbLS samples with different concentrations

• Insertion of a WbLS-volume (500I) into ANNIE

- ▶ Dimensions: cylinder with ~0.8m height, ~0.8m diameter
- Different amounts of LS loading (1% / 5% / 10%) \rightarrow evaluate benefits on reconstruction
- Show feasibility of WbLS in a neutrino-beam environment

The future: ANNIE as testbed for next-gen experiments

• WATCHMAN - Advanced Instrumentation Testbed (AIT):

- Remote reactor monitoring through Inverse Beta Decay, 2kt Cherenkov detector
- Both Gd-loaded water / WbLS considered as medium

• THEIA (25/100):

- > 25kt Cherenkov detector (WbLS) option in one of the DUNE caverns (module of opportunity)
- Broad physics program: Long baseline neutrinos, 0vββ, CNO neutrinos, SN neutrinos, geoneutrinos

07/20/2020

Summary

• ANNIE is a Gd-loaded water Cherenkov detector (26 tons mass) located in the BNB at Fermilab

• Physics measurement goals:

- Neutron multiplicity as a function of primary lepton momentum
- Neutrino cross-section in water
- Milestones:
 - July 2019: Installation of Inner Structure in the hall, water fill
 - **December 2019**: Nominal Gadolinium-loading achieved (0.2% weight)
 - Early 2020:
 - Detector commissioning, first beam neutrinos detected
 - Active water transparency monitoring (LED)
 - Neutron capture efficiency calibration (AmBe)
 - Characterization of all 5 LAPPDs
 - Soon:
 - ANNIE's first LAPPD deployment

• Future:

Testbed for new detection medium of water-based Liquid Scintillators

- Fermi National Accelerator Laboratory
- Brookhaven National Laboratory
- Lawrence Livermore National Laboratory The University of Edinburgh
- Iowa State University
- University of California, Davis
- University of California, Irvine
- University of Chicago

- Ohio State University
- The University of Warwick
- The University of Sheffield
- The University of Hamburg
- The University of Tübingen
- Johannes Gutenberg University Mainz

THANK YOU! ... ANY QUESTIONS?

Backup - Inelastic processes

 \rightarrow Move to event topologies (1 μ + 1/0 π + Xn + Yp) instead of MC generator-based categories (CCQE, RES,DIS,...)

 \rightarrow **Neutrons** as possible signs of **inelasticity** \rightarrow multiplicity measurement by ANNIE

Backup - DSNB & Proton decay

 \rightarrow Improve signal-to-background discrimination by better models of atmospheric neutron yield

Physics motivation - Inelastic processes

• Discriminating elastic and inelastic processes

- Misidentification of elastic/inelastic processes results in energy reconstruction bias
- neutron presence indicative of inelastic processes \rightarrow can help to minimize such biases

Fermilab Accelerator Complex

Backup: Phase II - Detector setup

Backup

- ANNIE will have a **dual readout design** to accommodate deep-buffered PMT signals (neutron capture) alongside ultra-fast LAPPD digitization
- PMTs: VME-based data acquisition system (500 MHz), global trigger for all PMTs
- LAPPDs: ACDC card hosting 5 PSEC sampling ASICs with multi-channel readout (10 GHz), independent triggers for every single LAPPD
- MRD: CAMAC-based data acquisition system, global trigger for all channels
- DAQ processes interfaced by **ANNIE central card** (8 nodes)

photo: Jonathan Eisch, Iowa State University

Test setup for communication of ANNIE central card & ACDC card

Backup - Water filtration

- Combination of different subsystems to obtain filtered Gdloaded and ultrapure water
 - Pumps: Transport water
 - UV lamps: Microbes, biological contamination
 - **TOC lamp:** Plastic (carbon) compounds
 - Microfilters: Bacteria, sediments, microbes (5 μm & 0.2 μm version)
 - Ultrafilters: Iron removal (30nm pore size)
 - Anion resin: Nitrates and TOC lamp products

Vincent Fischer, UC Davis

Backup - LED calibration

Cable delay calibration

Gain calibration

Comparison of ped, PE distribution fits to data

- Current timing uncertainty: 5ns
- Different groupings \leftrightarrow different PMT types
- Laser ball calibration will improve precision

Average PMT gain: 7 x 10⁶

Micelle structure

Chemistry behind WbLS

Water & Liquid Scintillator generally don't mix → need surfactant to bind liquid scintillator oil in water → possible surfactants: LAS, Triton X100

More WbLS properties

- ▶ 1% LS loading corresponds to ~ 100 photons / MeV
- Ongoing work on extended reconstruction techniques for fitting Cherenkov + scintillation light
- ▶ Enhanced detection of hadronic recoils (especially protons) → better event topology discrimination

WbLS for detectors at Advanced Instrumentation Testbed

- First neutrino detector at AIT (NEO) considers both Gd-loaded water & WbLS options
- WbLS is seen to be the natural progression for future detectors at AIT