Toward a differential measurement of the $\nu_e \text{ CC1eNp}$ cross section in MicroBooNE

Katrina Miller, on behalf of the MicroBooNE Collaboration

New Perspectives 2020

July 21, 2020

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1746045

Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.
The NuMI Beamline

Neutrinos at the Main Injector (NuMI):

- Neutrinos from NuMI enter MicroBooNE at angles ~ 10-140° from the beamline
- 120 GeV proton beam + Off-axis nature = Greater $\nu_e/\bar{\nu}_e$ flux content (~5%)
- Excellent source for $\nu_e/\bar{\nu}_e$ cross section studies!
ν_e Cross Sections in LArTPCs

“uncertainty on the ν_e and $\bar{\nu}_e$ cross-sections… [is] the second-largest single source of systematic uncertainty in the CP asymmetry measurement.”

Charged-current quasi-elastic (CCQE) interactions

- Vital to reach discovery precision in the ν_e appearance oscillation channel
 - neutrino mass ordering, CP violation, existence of sterile neutrinos
- Limited data available on ν_e cross sections overall
 - CC inclusive, CCQE-like differential results on carbon (T2K, MINERvA)
 - Only result on argon: Flux-averaged CC inclusive – 13 events (ArgoNeut)
- No exclusive differential ν_e-Ar cross sections currently exist
- CC1eNp: mostly CCQE \rightarrow a dominant interaction in SBN & DUNE

What is needed to measure the cross section?

1. Accurate flux prediction
2. High purity, high statistics sample of CC1eNp events
Updating the NuMI Flux Prediction

- **PPFX**: An experiment-agnostic reweight package developed by MINERvA to correct the NuMI GEANT4 simulation using external hadron production data.

Updating the NuMI Flux Prediction

- **PPFX**: An experiment-agnostic reweight package developed by MINERvA to correct the NuMI GEANT4 simulation using external hadron production data.

- **Dedicated, cross-collaboration effort** to update the NuMI flux prediction at MicroBooNE using the PPFX software.

Updating the NuMI Flux Prediction

- PPFX equips us with the most accurate NuMI flux prediction at MicroBooNE to date.

- ν_μ flux dominated by pion decays:
 \[\pi^+ \rightarrow \mu^+ + \nu_\mu \]

- ν_e flux dominated by muon & kaon decays:
 \[\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \]
 \[K^+ \rightarrow \pi^0 + e^+ + \nu_e \]
Event Selection: CC$^1\nu$e$^{-}$np Topology

Charged-current interactions
- neutrino \rightarrow charged lepton partner
- isospin of the nucleon flips

1eNp event signature
- 1 electron shower, attached to neutrino interaction vertex
- $N>0$ tracks: short, highly ionizing
Selected 1eNp signal candidate
*Color corresponds to energy deposit!
Selected 1eNp signal candidate
*Color corresponds to energy deposit!

μBooNE
Event Selection: Background Rejection

Cosmic muons

ν_μ CC events

$\pi^0 \rightarrow \gamma\gamma$ events

Event Selection Algorithm

Select well-reconstructed events away from TPC edges with neutrino candidate present

Quality cuts

Signal Topology

Cosmic Rejection

ν_μ Rejection

π^0 Rejection

MicroBooNE “In Progress”

8.793×10^{19} POT, Area-Normalized

CC1eNp signal
Event Selection Algorithm

one shower

Quality cuts

Signal Topology

Cosmic Rejection

ν_μ Rejection

π^0 Rejection
Event Selection Algorithm

Cosmic background misreconstructed as a neutrino interaction

Quality cuts

Signal Topology

Cosmic Rejection

ν_μ Rejection

π^0 Rejection

MicroBooNE Simulation
“In Progress”

- Cosmic Cont.: 134.5
- Out FV: 363.7
- $\nu_\mu / \bar{\nu}_\mu$ $\text{N}\pi^0$: 406.0
- $\nu_\mu / \bar{\nu}_\mu$ other: 527.9
- $\nu_e / \bar{\nu}_e$ other: 98.7
- ν_τ CC0πNp: 100.1

EXT: 922.7

Pure cosmic background
Event Selection Algorithm

Quality cuts

Signal Topology

Cosmic Rejection

ν_μ Rejection

π^0 Rejection

ν_μ CC background: low shower hits ratio

CC1eNp signal: high shower hits ratio

MicroBooNE Simulation

"In Progress"

ν_μ / $\bar{\nu}_\mu$, ν_e / $\bar{\nu}_e$

Cosmic Cont.: 134.5
Out FV: 363.7
ν_μ / $\bar{\nu}_\mu$, ν_e CC0N: 406.0
ν_μ / $\bar{\nu}_\mu$, other: 527.9
ν_e / $\bar{\nu}_e$, other: 98.7
ν_e CC0N: 100.1
EXT: 922.7

Shower Hits / Total Hits
Event Selection Algorithm

Quality cuts
Signal Topology
Cosmic Rejection
ν_μ Rejection
π^0 Rejection

Amount of energy deposited at start of photon-like showers: 2x what we expect from electron-like showers

MicroBooNE Simulation “In Progress”

- Cosmic Cont.: 13.9
- Out FV: 24.3
- $\nu_\mu / \bar{\nu}_\mu$ Nπ^0: 72.5
- $\nu_\mu / \bar{\nu}_\mu$ other: 9.6
- $\nu_e / \bar{\nu}_e$ other: 28.3
- ν_e CC0πNp: 54.7
- EXT: 43.4

$\nu / 8.793E19$ POT

dE/dx on the Collection Plane [MeV/cm]
Selection Performance

- High purity post-selection event sample (67%) with significant reduction of all backgrounds
- Optimization studies ongoing!
- Current dataset – 27.5 signal events – good shape agreement with NuMI data
Projected Event Rate

MicroBooNE has collected 9.23×10^{20} POT in Neutrino Mode – 10.5x what is currently available

Neutrino Mode -- Projected 9.23×10^{20} POT

289 signal events
67% purity
Projected Event Rate

MicroBooNE has collected 9.23×10^{20} POT in Neutrino Mode – **10.5x what is currently available**

Neutrino Mode -- Projected 9.23×10^{20} POT

- Cosmic Cont.: 6.9
- Out FV: 22.5
- $\nu_\mu / \overline{\nu}_\mu$: 29.3
- $\nu_\mu / \overline{\nu}_\mu$ other: 18.7
- $\nu_e / \overline{\nu}_e$ other: 50.4
- ν_e CC0nNp: 288.6
- EXT: 12.1

289 signal events
67% purity

Antineutrino Mode -- Projected 11.95×10^{20} POT

- Cosmic Cont.: 11.0
- Out FV: 27.3
- $\nu_\mu / \overline{\nu}_\mu$: 44.1
- $\nu_\mu / \overline{\nu}_\mu$ other: 24.9
- $\nu_e / \overline{\nu}_e$ other: 70.3
- ν_e CC0nNp: 243.8
- EXT: 15.8

244 signal events
56% purity

TOTAL PROJECTED = 2.12×10^{21} POT → over 500 signal events!
Summary

- ν_e - Ar cross sections crucial to the future success of SBN & DUNE

- MicroBooNE is positioned to perform a world-leading ν_e exclusive (CC1eNp) cross section measurement using the NuMI dataset:
 - New & improved NuMI flux prediction using PPFX
 - High purity 1eNp event selection
 - Total projected 2.12×10^{21} POT \rightarrow over 500 signal events!

- Current progress demonstrates MicroBooNE’s powerful ability to measure & reconstruct electron neutrinos
The NuMI Beamline

[Diagram of NuMI Beamline with labels for Target Hall, Decay Pipe, Absorber, Muon Monitors, Hadron Monitor, and Protons from Main Injector.]
Why does the off-axis nature of NuMI yield a higher $\nu_e/\bar{\nu}_e$ flux?

- At our energy scales, most $\nu_\mu/\bar{\nu}_\mu$'s come from 2-body decays – forward-boosted, constrained by kinematics
- In contrast, most $\nu_e/\bar{\nu}_e$'s come from 3-body decays – more freedom with kinematics, easier for a neutrino to be produced at higher angles
- Probability of seeing $\nu_\mu/\bar{\nu}_\mu$ drops faster than probability of seeing $\nu_e/\bar{\nu}_e$ as we move to higher angles

![Flux plots](https://arxiv.org/pdf/1412.3086.pdf)

Table

<table>
<thead>
<tr>
<th>Off-axis angle (°)</th>
<th>ν_e Flux 0.3-0.9 GeV</th>
<th>ν_μ Flux 0.3-5.0 GeV</th>
<th>Ratio ν_e/ν_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.24E+15</td>
<td>2.46E+17</td>
<td>0.507%</td>
</tr>
<tr>
<td>3.0</td>
<td>1.14E+15</td>
<td>1.90E+17</td>
<td>0.600%</td>
</tr>
<tr>
<td>3.5</td>
<td>1.00E+15</td>
<td>1.47E+17</td>
<td>0.679%</td>
</tr>
<tr>
<td>4.0</td>
<td>8.65E+14</td>
<td>1.14E+17</td>
<td>0.760%</td>
</tr>
</tbody>
</table>

July 21, 2020 | K. Miller | University of Chicago
How to Set a Cross Section

\[\text{# of events} = \text{flux} \times \text{interaction probability} \]

\[\sigma = \frac{N - B}{\epsilon \times N_{\text{Target}} \times \Phi_{\nu_e}} \]

- **efficiency**: correction factor to scale up observed # of signal events

 \[\text{efficiency} = \frac{\text{# of selected signal events}}{\text{# generated signal events}} \]

- **accurate** prediction of the \(\nu_e \) flux passing through the detector \([/\text{cm}^2]\)
Selection Performance

Neutrino Mode

Antineutrino Mode
How can we have a signal-dominated event sample in Antineutrino Mode?

Flux content switches to a primarily antineutrino beam...

... but the $\nu_e / \bar{\nu}_e$ cross sections stay the same
NuMI POT Collected in MicroBooNE

January 29, 2016 – March 20, 2020