MicroBooNE's Search for a Photon-Like Low Energy Excess

Kathryn Sutton

On behalf of the MicroBooNE Collaboration
New Perspectives
July 21st 2020
Intro to MicroBooNE

- 170 ton **liquid argon time projection chamber** (LArTPC), operating along Fermilab's Booster Neutrino Beam (BNB) since 2015
- One of the key goals is a test of the **MiniBooNE low-energy excess**
MiniBooNE Low Energy Excess

- **MiniBooNE** is a Cherenkov detector along the BNB, operating since 2002.
- Observed **excess of neutrinos at low energy** [1]
- **Photon-like** and **electron-like interpretations**

MiniBooNE Low Energy Excess

- Photon-like and electron-like interpretations

Photon backgrounds

NC Δ Radiative Decay

- Neutral Current (NC) $\Delta \rightarrow N\gamma$ is a **Standard Model (SM)** source of single photons.
- Never measured directly in neutrinos before
- 2019 T2K 90% C.L. [2] is $\text{O}(100x)$ the SM prediction
- **3x SM prediction** of $\Delta \rightarrow N\gamma$ could explain MiniBooNE Low Energy Excess [3]

Neutral Current (NC) $\Delta \rightarrow N \gamma$ is a Standard Model (SM) source of single photons.

Never measured directly in neutrinos before

2019 T2K 90% C.L. [2] is $O(100x)$ the SM prediction

3x SM prediction of $\Delta \rightarrow N \gamma$ could explain MiniBooNE Low Energy Excess [3]

NC Δ Radiative Decay in MicroBooNE

Incoming neutrino

\[\begin{align*}
\nu & \rightarrow \nu \\
Z^0 & \rightarrow \Delta \rightarrow N \\
Ar & \rightarrow X
\end{align*} \]
NC Δ Radiative Decay in MicroBooNE

Incoming neutrino

\[\nu \rightarrow v + Z^0 + X \]

\[Z^0 \rightarrow Y + N \]

\[Ar \rightarrow \Delta + X \]
NC Δ Radiative Decay in MicroBooNE
NC Δ Radiative Decay in MicroBooNE
Single Photon Topologies in MicroBooNE

Selected data $1\gamma 1p$ NC Δ radiative signal candidate with 1 shower

MicroBooNE Data, Run 5462 Subrun 14 Event 732
Single Photon Topologies in MicroBooNE

Selected data $1\gamma 1p$ NC Δ radiative signal candidate with 1 shower

MicroBooNE Data, Run 5462 Subrun 14 Event 732

$1\gamma 1p$ Topological Selection
Single Photon Topologies in MicroBooNE

Selected data $1\gamma 0p$ NC Δ radiative signal candidate with 1 shower

MicroBooNE Data
Run 5187 Subrun 188 Event 9430
Single Photon Topologies in MicroBooNE

Selected data $1\gamma 0p$ NC Δ radiative signal candidate with 1 shower

γ

MicroBooNE Data
Run 5187 Subrun 188 Event 9430

$1\gamma 0p$ Topological Selection
Selection Stages

1. Take reconstructed tracks and showers [4]
2. Find candidate vertices matching 1γ topologies
3. Apply pre-selection cuts to remove obvious backgrounds
4. Remove backgrounds using tailored boosted decision trees (BDTs)

Goal is a high sensitivity search for NC $\Delta \rightarrow N\gamma$ events over background prediction, fit to an excess using in-situ NC π^0 constraint

Selection Stages

1. Take reconstructed tracks and showers [4]
2. Find candidate vertices matching 1γ topologies
3. Apply pre-selection cuts to remove obvious backgrounds
4. Remove backgrounds using tailored boosted decision trees (BDTs)

Goal is a high sensitivity search for NC $\Delta\rightarrow N\gamma$ events over background prediction, fit to an excess using in-situ NC π^0 constraint

Topological Selection Stage

- Showing results using 5% sample unblinded data, full data set is ~25x larger
- $1\gamma 1p$ topological selection (1 track + 1 shower)
- NC Δ radiative simulated events with 3x SM prediction
- Strongly dominated by cosmic, dirt, and BNB charged current (CC) ν_μ backgrounds
- Signal:background ~1:700

Reconstructed Δ Invariant Mass $M_\Delta = 1.232$ GeV
Similarly dominated by backgrounds for $1\gamma 0p$ (1 shower) topology.
Selection Stages

1. Take reconstructed tracks and showers [4]
2. Find candidate vertices matching 1γ topologies
3. Apply pre-selection cuts to remove obvious backgrounds
4. Remove backgrounds using tailored boosted decision trees (BDTs)

Goal is a high sensitivity search for NC $\Delta \rightarrow N\gamma$ events over background prediction, fit to an excess using in-situ NC π^0 constraint
Selection Stages

Take reconstructed tracks and showers [4]

- **Find candidate vertices matching 1\(\gamma\) topologies**
- **Remove backgrounds using tailored boosted decision trees (BDTs)**

Goal is a high sensitivity search for NC \(\Delta \rightarrow N\gamma\) events over background prediction, fit to an excess using in-situ NC \(\pi^0\) constraint

Apply pre-selection cuts to remove obvious backgrounds

Apply fiducial and calorimetric cuts targeting cosmic, dirt, and CC backgrounds
Selection Stages

1. Take reconstructed tracks and showers [4]
2. Find candidate vertices matching 1γ topologies
3. Apply pre-selection cuts to remove obvious backgrounds
4. Remove backgrounds using tailored boosted decision trees (BDTs)

Goal is a high sensitivity search for NC $\Delta \rightarrow N\gamma$ events over background prediction, fit to an excess using in-situ NC π^0 constraint
Background Rejection BDTs

- BDTs targeting key backgrounds trained independently for each topology, cuts optimized simultaneously
- For $1\gamma 1p$ train 5 BDTs: cosmic, ν_e, NC π^0, second shower π^0 mis-ID, and all other BNB backgrounds
- Here showing example of $1\gamma 1p$ NC π^0 rejection BDT response
NC π^0 Background

- NC $\pi^0 \rightarrow \gamma + \gamma$ is a key background.
- If second photon shower is missed/mis-reconstructed, looks identical to signal.

$$\nu_\mu + p \rightarrow \nu_\mu + \Delta^+$$

MicroBooNE Data, Run 5762 Subrun 114 Event 5732
Optimized BDT cut at 0.467 removes 78.8% of NC π^0 background events relative to pre-selection cuts stage. Other remaining backgrounds targeted by dedicated BDTs.
Selection Stages

- Take reconstructed tracks and showers [4]
- Find candidate vertices matching 1γ topologies
- Apply pre-selection cuts to remove obvious backgrounds
- Remove backgrounds using tailored boosted decision trees (BDTs)

Goal is a high sensitivity search for NC $\Delta \rightarrow N\gamma$ events over background prediction, fit to an excess using in-situ NC π^0 constraint
Final Selection

- Showing results using 5% sample unblinded data, full data set is ~25x larger
- $1\gamma1p$ final selection with topological, pre-selection, and optimized BDT cuts applied
- Strong rejection of cosmic, dirt, and CC backgrounds
- NC π^0 events comprise >85% selected backgrounds

Reconstructed Shower Energy

(Data/MC: 0.68) (KS: 0.978) (χ^2/nDOF: 5.17/12) (χ^2 P-val: 0.952)
Majority of sensitivity comes from $1\gamma 1p$ selection given higher purity but combined fit with $1\gamma 0p$ gives maximal sensitivity to NC Δ→Nγ.
Projected Final Selection for Full Data Set

- MC prediction for final selections scaled to expected full data set
- Showing flux, cross section, and detector systematics with constraint on systematics from in situ NC π^0 measurement
- Fit simultaneously to NC π^0 components of single photon (1γ) and dedicated NC π^0 (2γ) selections
MicroBooNE Projected Bound

- 90% C.L. for Runs 1-3
- 3x SM rate $\Delta \rightarrow N\gamma$
- 90% C.L. for Runs 1-5
- GENIE xsec
MicroBooNE Projected Bound

- σ (10^{-42} cm^2/nucl) vs. E_v [GeV]
- BNB Flux at μBooNE (a.u.)
- GENIE σ (G18_10a_02_11a)
- Expected 90% C.L.
- Flux Averaged GENIE $\langle \sigma \rangle$
- E.Wang et al. 1311.2151
- Mean Nucleon, C_9^ν 1σ spread
- Runs 1-3 (6.9e20 POT)
- Runs 1-5 (12.3e20 POT)

\sim30x improvement over current best limit

90% C.L. for Runs 1-5

GENIE xsec
Summary and Conclusions

- MicroBooNE well-situated to provide world-leading constraint NC $\Delta \rightarrow N\gamma$, never directly measured in neutrinos before.
- For the full data set (12.25e20 POT), projected to exclude the MiniBooNE LEE under NC $\Delta \rightarrow N\gamma$ hypothesis at >95% C.L.
- Currently unblinding sidebands as a step towards opening the signal box for the first result with runs 1-3 (6.8e20 POT).
- Please refer to public note for more details: MICROBOONE-NOTE-1087-PUB.
Thanks!
Backup
Precuts Selection Stage

γp 0.41e20 POT
MicroBooNE Preliminary

(Data/MC: 1.00) (KS: 0.852) (χ^2/nDOF: 16.60/18) ($\chi^2 P^{val}$: 0.550)

(Data/MC: 1.03) (KS: 0.590) (χ^2/nDOF: 13.23/18) ($\chi^2 P^{val}$: 0.778)
Dirt Backgrounds
In-Situ NC π^0 Measurement

Single photon $1\gamma_0p$ and $1\gamma_1p$ selections

Complementary NC π^0 $2\gamma_0p$ and $2\gamma_1p$ selections
NC π^0 Systematics Constraint for Single Photon Selection

Constrained Systematics

Unconstrained Systematics