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Search for a Light Pseudoscalar Higgs
Boson with Boosted Topologies at CMS
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https://link.springer.com/article/10.1140/epjc/s10052-019-6909-y

UCDAVIS

e Add additional doublet to SM Higgs sector (eg. MSSM)

e Lightest scalar in ZHDM compatible with H(125)

e Characterize model via doublet (®1 and ®,) couplings to fermions

Type-1 | Type-2 | Type-3 (lepton-specific) | Type-4 (flipped)
Up-type quarks P, D, ®, ®,
Down-type quarks dy P4 dy d4
Charged leptons D, D, dq by

MS: arXiv:1701.02032

e Type 3 - enhanced couplings to leptons especially at high tan B

e tan B= vo/vq where vq and v; are the vacuum expectation values for ®; and @
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https://arxiv.org/abs/1701.02032

UCDAVIS

oHDM +singlet

e extend 2HDM to add additional singlet field: 2HDM+S
e theoretically motivated (NMSSM)

e neutral scalars (hq, hy, h3)
* neutral pseudoscalars (a1, ay)

e charged H=*

¢ in this case, SM-like H(125) is one of the neutral scalars
* naturally light pseudoscalars
* can search for direct production of h -> aa (h1 -> a7 ay)

* possibility of Higgs bosons with masses > 125 GeV

20/21July 2020 Grace Haza - University of California, Davis 4



UCDAVIS

boosted topology
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e difference between H mass and a mass
gives boosted topology 500
* |eads to collimated tau decays 750
* uuTT channel provides high branching 1000

fraction (TT) and high efficiency (up)
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UCDAVIS

branching fractions
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® Wh ® TyThad and TeThad -
0 T, cleaning lepton object
® from tau cone
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® ThadThad: Machine learning
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® ThadThad Channel important but high level of
hadronic backgrounds
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UCDAVIS

* inputs: jet, charged hadron, neutral hadron, electron, muon, photon
variables

* outputs: number related to probability of being a certain type of jet
(classification among overlapping di tau, light jet, or b jet)

* Wj are the weights updated during training (iterative process where
neural net is improved based on success and failure on representative
sample)

CMS: BTV-16-002

Hidden layers
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https://arxiv.org/pdf/1712.07158.pdf

UCDAVIS

[§ VAR
N v
N
Z

® during training, monitor loss function (penalizes false positives and
false negatives, weighted by confidence of model) and minimize

* validation: part of training sample set aside and not actually trained
on, monitored to avoid divergence of validation and training
performance
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UCDAVIS

machine learning: mass decorrelation

. . . Work in progress
* searching for a range of exotic Higgs
and pseudoscalar masses

TauHTauH A 0.10 0.06

* Monte Carlo samples available for a

finite number of discrete Higgs and
pseudoscalar mass pairs

bjet

True label

- 0.3

lightjet - 0.2
* mass decorrelation: prevent the net

from “learning” to look for specific
masses
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UCDAVIS

outlook

CMS Integrated Luminosity, pp, vs = 13 TeV

Data included from 2015-06-03 08:41 to 2018-10-24 04:00 UTC
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e search for H -> aa -> puTT

* implement mass
decorrelation in ThagThad
channel
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UCDAV'S
s Altheoretical motivation

e BSM final state likely to have “non-negligible”
branching fraction

e 2HDM: it my < my /2 then 2HDM, potential must be
tuned

* MSSM: pseudoscalar, but it must be > 95GeV

e NMSSM: two pseudoscalar higgs bosons, one (likely)
ighter than 125 GeV

* NMSSM is special case of ZHDM+S
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UCDAVIS

s “llpseudoscalar decays

* branching ratios of a depends on lepton masses

D(a—ptp)  mpy/1—(2my/ma)?

Fla—=7777)  m2/1— (2m,/ma,)?

CMS: arxiv:1701.02032

m (T) = 1.776 GeV

m (u) = 0.106 GeV — 0.0077 for m, = 4 GeV

e decay to T favored = 0.0036 for m, = 20 GeV
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https://arxiv.org/abs/1701.02032

UCDAVIS

95% CL upper limits
Expected exclusion
B(H — aa)= 1.0
Observed exclusion
B(H — aa)= 1.0
¢ 2016 data onl - e,
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Observed exclusion
B(H — aa) = 0.47
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https://arxiv.org/pdf/2005.08694.pdf

UCDAVIS

light flavor and heavy flavor jets

—3% tracks b jet

------ b hadron

------ impact
parameter

secondary
vertex

do
light jet .

tightjet
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UCDAVIS
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UCDAVIS

Hadron Plus Strips

* begins with particle flow constituents in AK4 jet
* strips in electromagnetic calorimeter are used to reconstruct m0 -> yy

* strips combined with charged particle flow hadrons to determine
decay mode (hnumber of charged particles in final state)

Hadron + Strip Three Hadrons

single /
Hadron 7
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https://indico.cern.ch/event/917686/contributions/3857049/attachments/2067414/3469828/Tau_reconstruction_hats.pdf

UCDAVIS

. 4@ machine learning: hyperparameters

* batch size = number of training samples processed
before parameters of neural net (weights) updated

® epochs = number of complete passes through the
entire training set
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UCDAVIS

cross entropy loss function and

accuracy

Log Loss when true label = 1

M
Loss for each category
— lo
label per observation: ‘; Yo 108(po.c)

ol | e M = number of categories

e y=0or1ifclass label cis
correct for sample o

2t 1 * p = predicted possibility o

is label ¢

log loss

0.0 0.2 0.4 0.6 0.8 1.0 source
predicted probability

® accuracy = (number of true positives + number of true negatives) / total number of
predictions
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https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

