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search for exotic Higgs decays

• meta-analysis of SM 
Higgs results by CMS 

• remaining uncertainties 
in measured BFs leave 
room for BSM 
couplings 

• direct searches for 
exotics and Higgs 
decays to exotics well 
motivated
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CMS: EPJ C 79, article 421

https://link.springer.com/article/10.1140/epjc/s10052-019-6909-y
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2 Higgs Doublet Model
• Add additional doublet to SM Higgs sector (eg. MSSM) 

• Lightest scalar in 2HDM compatible with H(125) 

• Characterize model via doublet (Φ1 and Φ2) couplings to fermions
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• Type 3 - enhanced couplings to leptons especially at high tan β 

• tan β= v2/v1 where v1 and v2 are the vacuum expectation values for Φ1 and Φ2

CMS: arXiv:1701.02032

https://arxiv.org/abs/1701.02032
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2HDM+singlet
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• extend 2HDM to add additional singlet field: 2HDM+S 

• theoretically motivated (NMSSM) 

• neutral scalars (h1, h2, h3) 

• neutral pseudoscalars (a1, a2) 

• charged H± 

• in this case, SM-like H(125) is one of the neutral scalars 

• naturally light pseudoscalars 

• can search for direct production of h -> aa (h1 -> a1 a1) 

• possibility of Higgs bosons with masses > 125 GeV 



Grace Haza - University of California, Davis20/21July 2020

boosted topology

• difference between H mass and a mass 
gives boosted topology  

• leads to collimated tau decays 

•μμττ channel provides high branching 
fraction (ττ) and high efficiency (μμ)
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H mass (GeV) a mass (GeV)

125 4 - 21

250 5 - 20

500 5 - 25

750 10 - 30

1000 10 - 50
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branching fractions
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plots by John Gunion, UC Davis
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channels

• τμτhad and τeτhad : 
cleaning lepton object 
from tau cone 

• τhadτhad: machine learning 
techniques being applied 

• τμτμ, τeτe,τμτe: use 
standard e/μ ID 

• 2016 analysis: τμτhad 

channel only
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Lepton cleaning
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one and two hadronic tau decays
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• τhadτhad channel important but high level of 
hadronic backgrounds 
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machine learning: neural net
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• inputs: jet, charged hadron, neutral hadron, electron, muon, photon 
variables 

• outputs: number related to probability of being a certain type of jet 
(classification among overlapping di tau, light jet, or b jet)  

• Wij are the weights updated during training (iterative process where 
neural net is improved based on success and failure on representative 
sample)

CMS: BTV-16-002

https://arxiv.org/pdf/1712.07158.pdf
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machine learning procedure
• during training, monitor loss function (penalizes false positives and 

false negatives, weighted by confidence of model) and minimize 
• validation: part of training sample set aside and not actually trained 

on, monitored to avoid divergence of validation and training 
performance
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sign of 
overtraining

Work in progress

Work in progress
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machine learning: mass decorrelation

• searching for a range of exotic Higgs 
and pseudoscalar masses 

• Monte Carlo samples available for a 
finite number of discrete Higgs and 
pseudoscalar mass pairs 

• mass decorrelation: prevent the net 
from “learning” to look for specific 
masses
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Work in progress
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outlook
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• search for H -> aa -> μμττ 

• implement mass 
decorrelation in τhadτhad 

channel 

• working on other channels 
in parallel including 
cleaning technique 

• result on Full Run 2 dataset 
to discover new particle (or 
improve observed limits) 



backup
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theoretical motivation
• BSM final state likely to have “non-negligible” 

branching fraction 

• 2HDM: if ma < mh /2 then 2HDM, potential must be 
tuned  

• MSSM: pseudoscalar, but it must be > 95GeV 

• NMSSM: two pseudoscalar higgs bosons, one (likely) 
lighter than 125 GeV 

• NMSSM is special case of 2HDM+S
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pseudoscalar decays
• branching ratios of a depends on lepton masses
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m (τ) = 1.776 GeV 
m (μ) = 0.106 GeV 

• decay to τ favored

= 0.0077 for ma = 4 GeV 
  
= 0.0036 for ma = 20 GeV

CMS: arxiv:1701.02032

https://arxiv.org/abs/1701.02032
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previous results

• 2016 data only 

• τμτhad channel only
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CMS: arXiv:2005.08694v1

https://arxiv.org/pdf/2005.08694.pdf
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light flavor and heavy flavor jets
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event in detector
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Hadron Plus Strips
• begins with particle flow constituents in AK4 jet 

• strips in electromagnetic calorimeter are used to reconstruct π0 -> γγ 

• strips combined with charged particle flow hadrons to determine 
decay mode (number of charged particles in final state)
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https://indico.cern.ch/event/917686/contributions/3857049/attachments/2067414/3469828/Tau_reconstruction_hats.pdf
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machine learning: hyperparameters

• batch size = number of training samples processed 
before parameters of neural net (weights) updated 

• epochs = number of complete passes through the 
entire training set
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cross entropy loss function and 
accuracy
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source

• M = number of categories 
• y = 0 or 1 if class label c is 

correct for sample o  
• p = predicted possibility o 

is label c

Loss for each category 
label per observation:

• accuracy = (number of true positives + number of true negatives) / total number of 
predictions

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

