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Quantum simulation of QFT — simulate boson

field

Advantage of quantum simulation: non-equilibrium, strong interaction, large lattice,

 Relativistic quantum field theory
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Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets

Abhinav Kandala'*, Antonio Mezzacapo'*, Kristan Temme', Maika Takita', Markus Brink’, Jerry M. Chow! & Jay M. Gambetta'

Quantum computers can be used to address electronic-structure
problems and problems in materials science and condensed matter
physics that can be formulated as interacting fermionic problems,
problems which stretch the limits of existing high-performance
computers'. Finding exact solutions to such problems numerically
has a computational cost that scales exponentially with the size of
the system, and Monte Carlo methods a itable owing to the

problem using the quantum phase estimation algorithm'®. Although
this algorithm can produce extremely accurate energy estimates for
quantum chemistry>**4, it applies stringent requirements on the
coherence of the quantum hardware.

An alternative approach is to use quantum optimizers, which

have previously demonstrated utility, for example, for combinatorial
1617

fermionic sign problem. These limitations of classical comp

P problems'®'” and in quantum chemistry as variational
quantum eig I (VQEs) where they were introduced to reduce

methods have made solving even few-atom electronic- ~lruuurc
problems mlere\uny, for impl i usmg i i

s. Yet experi i ion hm-
so far been restricted to molecules involving unl\ h\ drog,en md
helium®*. Here we d the experi

Scalar ¢* model

the coherence requirements on quantum hardware*'*'°. The VQE uses
RitZ’s variational principle to prepare approximations to the ground
state and its energy. In this approach, the quantum computer is used to
prepare variational trial states that depend on a set of parameters. The
expectation value of the energy is then estimated and used in a classical

Standard model: Higgs boson
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Yukawa interaction V = g Yy¢: scalar boson field (¢)

Non-Abelian gauge theory: massless gauge boson

Quantum simulation of bosons: much less developed compared to simulation of fermions,

which is investigated along with quantum computing of quantum chemistry models



H

Scalar ¢* model

1 1 , 1
= adZ §7T% + §m(2)cp§ + 5

One of the simplest non-trivial model

Simulate Hamiltonian (instead of Lagrangian)

Spatially discretize the continuous field model

onto a lattice model

Continuous model with Lorentz invariance

recovers in the limita — 0
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Abstract

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic
scattering probabilities in a massive quantum field theory with quartic self-interactions (¢*
theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of
particles, their energy, and the desired precision, and applies at both weak and strong
coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves
exponential speedup over the fastest known classical algorithm.



Steps of the quantum simulation algorithm

* Boson encoding

* Boson Hamiltonian — qubit Hamiltonian

* Initial state preparation

 VVacuum state

» Measurements

 Correlation functions — Green’s function



Boson encoding — position basis for ¢* model

* Fermion digital qguantum simulation:

Fermions — qubits : Jordan—-Wigner, Bravyi-Kitaev, etc.

Boson encoding scheme
.I.

Number basis encoding Position basis encoding H=waa
In=N)=1[1..11), ¢ g( o
E 1 |p = A1) =1..11),
n=3)=10..11), | = A(RS1-1)) = [1...10), ataln) = nin)
In =2) =10...10),
In = 1) = 0...01), .|_ |6 = A(-1)) = 10 ...00), dlp) = dld)

In=0)=10...00)q Ref: Phys. Rev. Lett. 121, 110504

Position basis is more convenient for the ¢* term
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Time evolution & measurement in position basis
H=K(m)+ U(¢)

Qubit count N per site ~log, 1.5 N yioft
/ \ \ Time evolution 0 (poly (ngiN, 1/€))
1 9 ,
_ “dz ( 724 —m()c) +3 (Vadz)” + 4—(')( %) Measurement 0 (nsiteN?)

« Time evolution
R e—i6[K(7T)+U(qb)] — e—iSK(n)e—iSU(qb) + 0(52)
« ¢~!0U(P): diagonal unitary operator in position basis  [Ref: New J. Phys 16 (2014) 033040]

« ¢~0K(m: QFT~1 D QFT, where D is a diagonal unitary operator

* QFT: O(ngjte N2 WC}@
Q (Nsit ) D@
« Measurement l ! -

* (0(¢)): measure all qubits

| . ~—E-®)
« (0'(m)): QFT and then measure all qubits . -- @)

QFT circuit implementation




Vacuum state preparation of scalar ¢* model

/\
H(h) = adZ( —m()@ —I— ) ) +hadz 5

Local Hamiltonian Coupling between sites

Variational preparation Adiabatic state

of ground state transfer

H(h=0) |g) =———— |0) H(h=1)

Optimize circuit parameters to minimize (H(h = 0)) e WOH(N=1) o~i0H(h=2Ah)o—i0H (h=Ah)o~I0H(h=0)

q0o _ogga_lezz_ _55‘41_ 525 A _-54(41_—';%5
—Ra R @n i IRT. o B 'R OB s o RS BN

qol 0 895 31 25 0.855 EEad [[25e 25 0.855 -1.12 254 Ad Va n ta g e :
902 — 10— ok ot O
o —F-F-o- BB BB o B 1. Efficient variational preparation compared to
0 -0 o8 BB Kitaev-Webb method [arXiv:0801.0342 (2008)]
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# of layers: nygyer



Measuring correlation functions

» Measure A(j, k, t1, to) = (T¢;(t1)pr(to)) ON quantum processor

« Green'’s function A by Fourier transform A on a classical computer

* Quantum algorithm to measure time ordered correlation function [Ref: PRA 65, 042323 (2002)]

(¢ () Po(0)) = (U(—t)p;U(t) o)
T

|‘1’0>IE b

U(t)

[T11
L1l
&




Hzadz

How much can we do today?
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« Forced harmonic oscillator: H = %pz + %xz —\/7x

 Variational ground state preparation by a pretrained

circuit using a classical computer

* Run the program on a Google’s quantum device
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Adoption to
Google’s device
native gate set
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Acceptable result for gate count <100

Adiabatic state transfer & correlation function:

preliminary gate count estimate ~10°



Summary

 Quantum simulation algorithm for scalar ¢* theory

 Local ground state: optimizing a variational circuit for local Hamiltonian
« Vacuum state: adiabatically turn on the coupling between sites

 Green’s function:; measure time-ordered correlation function

* Implementation status
« Local ground state preparation: demonstration on currently available processor with errors

« Vacuum state preparation & Green’s function: not for today hardware

« On-going work

 Quantum resource estimation

» Error-mitigation scheme
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