

Pesquisas Físicas

1

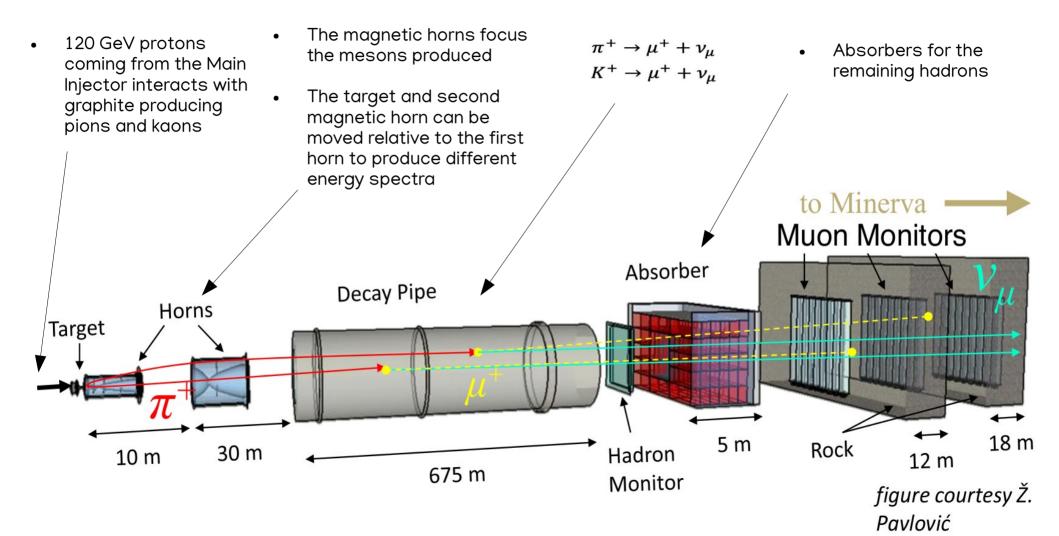
MINERvA in 10 minutes!

Gian Caceres (On behalf of the MINERvA Collaboration)

> New Perspectives Fermilab – July 20, 2020

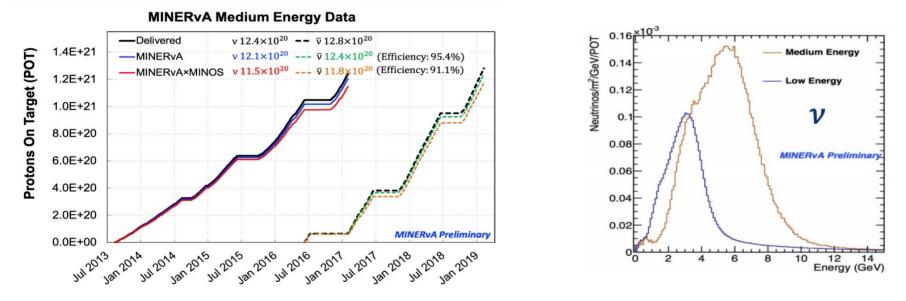
What is MINERvA ?

• MINERvA is a dedicated neutrino scattering experiment in the NuMI beamline at Fermilab

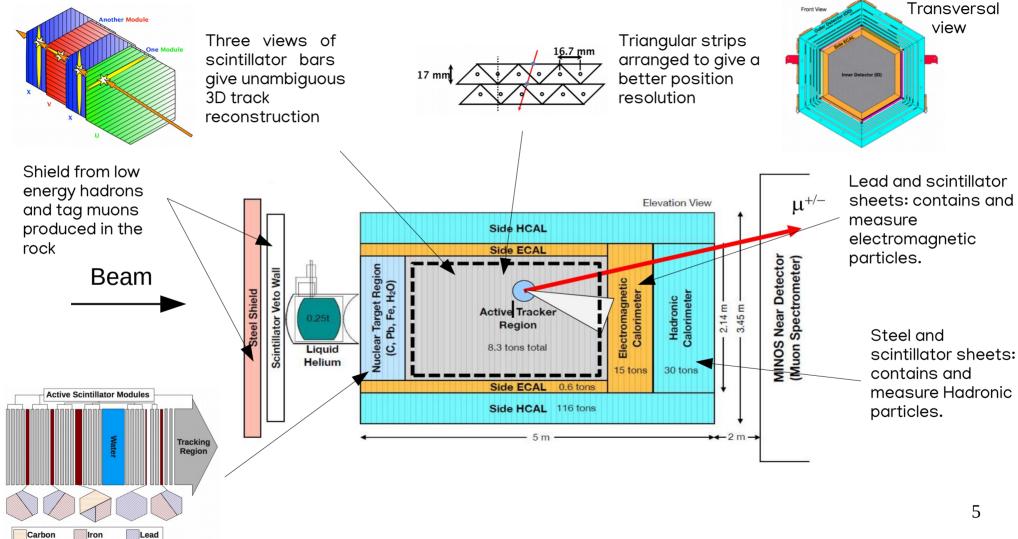

Main goals:

- Understand the nature of neutrino-nucleus interactions:
 - Identification of nuclear effects
 - Measure exclusive and inclusive final states, and correlations of those with leptons
- Compare measurements with Monte Carlo predictions to improve the models.

MINERvA week 2020



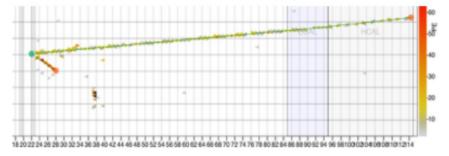
The NuMI beam


The NuMI beam entering MINERvA

- Two beam exposures were completed, each with $< E_{\nu} >$ around 3 GeV and 6 GeV
- End of data taking was on February 2019

Mode	νPOT	$\bar{\nu} POT$
Low Energy	4.0e20	1.7e20
Medium Energy	12.1e20	12.4e20

The MINERvA Detector


What do we see in the detector ?

We can only see the products of the interactions

Examples of candidates:

Pion Production $\nu_{\mu} + p \rightarrow \mu^{-} + \pi^{+} + p$

Muon Neutrino Quasi-elastic $\nu_{\mu} + n \rightarrow \mu^{-} + p$

Color = Energy deposited

- We must determine neutrino energy from the final state energy
- The final lepton ($\ \mu^+ \ or \ \mu^-$) is measured by MINOS and the rest of the particles are measured by the MINERvA calorimeters

Recent Publications

1. MINERvA Collaboration, Double-differential inclusive charged-current ν_{μ} cross sections on hydrocarbon in MINERvA at $< E_{\nu} > \sim 3.5 \ GeV$. Phys.Rev.D. 101 (2020) 11, 112007.

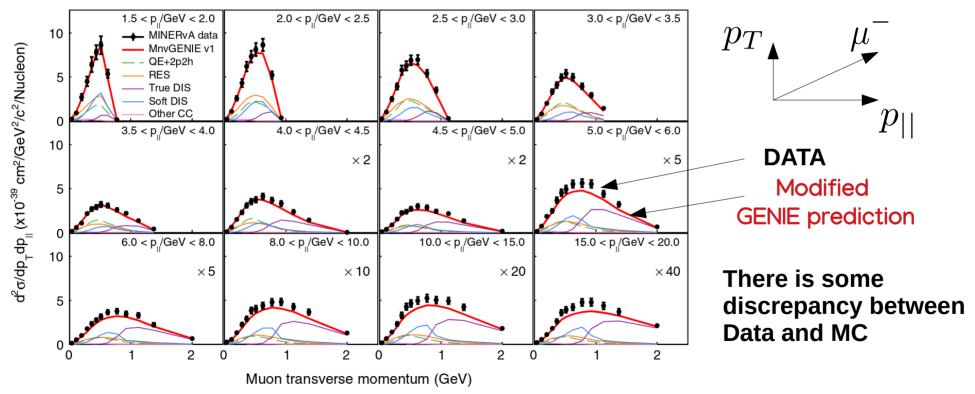
2. MINERvA Collaboration, Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions. Phys. Rev. D 101 (2020) 9, 092001.

3. MINERvA Collaboration, High-Statistics Measurement of Neutrino Quasielasticlike Scattering at 6 GeV on a Hydrocarbon Target. Phys. Rev. Lett. 124 (2020) 12, 121801.

4. MINERvA Collaboration, Probing Nuclear Effects with Neutrino-induced Charged-Current Neutral Pion Production. ArXiv: 2002.05812.

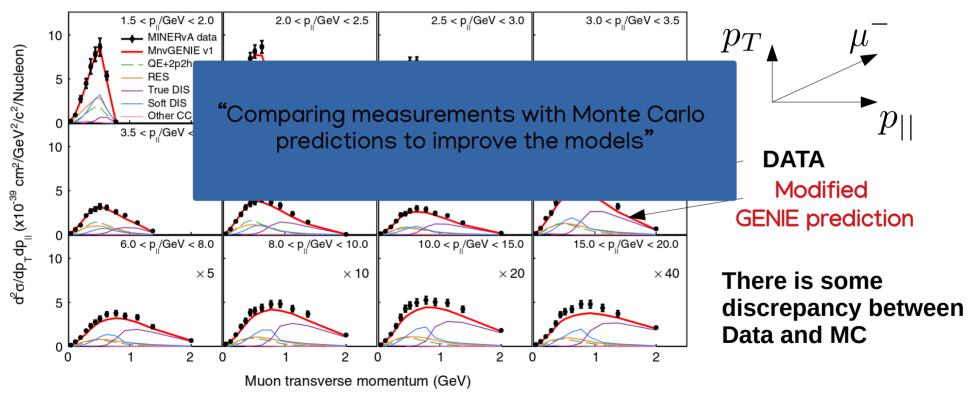
5. MNERvA Collaboration, Constraint of the MINERvA medium energy neutrino flux using neutrino-electron elastic scattering. Phys.Rev.D 100(2019) 9,092001.

6. MNERvA Collaboration, Measurement of $\bar{\nu}_{\mu}$ charged-current single π^{-} production on hydrocarbon in the few-GeV region using MINERvA. Phys.Rev.D. 100(2019) 5, 052008.


7. MINERvA Collaboration, Measurement of Quasielastic-Like Neutrino Scattering at E_{ν} ~3.5 GeV. Phys.Rev.D 99(2019) 1, 012004.

8. MINERvA Collaboration, Neutron measurements from antineutrino hydrocarbon reactions. Phys.Rev.D 100(2019) 5,052002.

9. MINERvA Collaboration, Tuning the GENIE Pion Production Model with MINERvA data. Phys.Rev.D 100(2019) 7,072005.


Recent Publications

1. MINERvA Collaboration, Double-differential inclusive charged-current ν_{μ} cross sections on hydrocarbon in MINERvA at $< E_{\nu} > \sim 3.5 \ GeV$. Phys.Rev.D. 101 (2020) 11, 112007.

Recent Publications

1. MINERvA Collaboration, Double-differential inclusive charged-current ν_{μ} cross sections on hydrocarbon in MINERvA at $< E_{\nu} > \sim 3.5 \ GeV$. Phys.Rev.D. 101 (2020) 11, 112007.

Summary

- We want to make high precision measurements of neutrino interaction cross sections off a variety of different nuclei
- Results will continue improving model descriptions which are important for oscillation experiments
- MINERvA has been exposed to two neutrino beam modes ($< E_{\nu}>$ around 3 GeV and 6 GeV)
- We use MINERvA (hydrocarbon scintillator and calorimeters) and MINOS (muon spectrometer) to reconstruct our events
- Still more results will be coming from the medium energy data set!

Thanks!