Primary Beamline Target Shield Pile Cooling Panel RAW System Preliminary Design Review

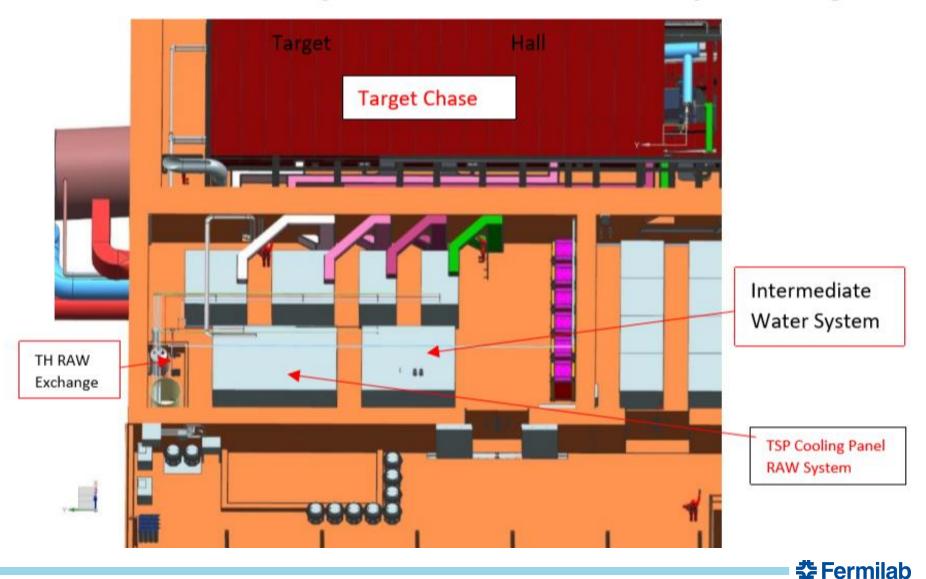
Technical Design Aspects

Raina Wang February 19, 2020

Office of Science

Purpose and Scope

- Preliminary design of the Target Shield Pile (TSP) Cooling Panel radioactive water (RAW) system to cool the inner layers of steel shielding of the target chase in Target Hall for 2.4MW beamline of LBNF project.
 - To supply and return cooling water for:
 - 36 cooling panels, 18 each side of the target chase
 - 8 small panels attached to the bottom of some t-blocks


Purpose and Scope – Cont.

- A stand along skid: equipment, pipes, valves, fittings, and field installed instruments
- Piping and piping components between the skid and the nozzles of 44 panels
- First valve between:
 - LBNF TH Exchange System and
 - Intermediate Water System, which covers the pipes
- Mechanical techniques for mitigating radiation risks
- All other EHS related radiation dose rate evaluations and control are excluded from this system
 - They are the work scope of ESH or Radiation Physicist Department

Purpose and Scope – Cont.

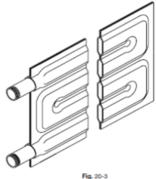
Picture 1: TSP Cooling Panel RAW Skid Location in Target Hall Complex

Design Standards and Codes

- ASME B31.3 Code for Normal Fluid Service
- ASME BPVC Section IX for Welding Process Specifications (WPS's) and welders & pipefitters' Personal Weld Qualifications
- Both piping and vessels will adhere to FESHM Chapter 5031, as well as the Fermilab Engineering Manual
- Numi/Nova systems' general operational feedbacks for improvement

Design Requirements

- Safe, Reliable, and Economic
- Convenient for operation and maintenance
- Meet water quality and capacity of operational requirements for:
 - 1.2MW beamline first phase
 - 2.4 MW beamline 2nd phase
- Design depth sufficient for cost estimating for Project Budget


Design Requirements – Process By Matt Slabaugh and Joseph Angelo

LBNF Target Shield Pile Cooling Panel Fluid Requirements and Specifications

The LBNF Target Shield Pile Cooling Panel (TSP panels) function to intercept energy deposited on the inner layers of steel shielding of the target chase. The TSP panels consist of two layers of 2in steel plate, with a <u>Trantor</u> Style 30 <u>Platecoil</u> clamped between them. Eighteen TSP panels line each side of the target chase, for a total of 36 panels. In addition to these panels, there are 8 small panels attached to the bottom of some t-blocks

General Requirements

 Supply systems shall use components and fabrication techniques appropriate for a radiation environment and carrying RAW wherever possible.

- Each TSP panel location shall have provision for isolating both supply and return of the panel.
- 3. Supply system shall be galvanically compatible with 304SS platecoils.
- Supply piping system shall be capable of operating at flow rates at least 30% higher than the specified range, due to uncertainty in temperature requirements.
- Supply system shall be capable of handling heat loads from both 1.2 MW and 2.4 MW beam running.
- Supply piping system shall be integrated in the Target Shield pile CAD model to allow fitment within and around other elements of the shield pile. Figure 1 <u>Trantor Platecal</u> (not full size)

➡ Specifications

+·	•							
	Total number of panels	36+8	Design					
	Total heat load @ 1.2 MW beam	280 kW	From DUNE-doc-13256-v1 Table III					
	Total heat load @ 2.4 MW beam	550 kW	From DUNE-doc-13256-v1 Table III					
Γ	Pressure drop across each panel	65 PSI	From panel mfr. data					
Γ	Supply temperature	30°C	Design					
Г	Flow rate each panel	3-8 GPM	Calculated flow requirement for an optimal ste					
			temperature between 100C and 160C, as					
			requested by Jim Hylen July 2019. Assumes Style					
L			30 large pass platecoil.					
Γ	Fluid volume each panel	~7 Gal	1.05 sq.in cross section X 11 passes X 144 in					
			height = 1663 cu.in or ~ 7 Gal. The 8 small panels					
L			will be less					

Design Capacity – 450 GPM

Iap		ling Load a		Capacity			
	Unit	Operating			Des	sign	
Beamline capacity		1.2 MW	2.4MW	1.2MW	2.4MW	Safety factor	
						1.3 per process	
Total big panel	KW	280	550	364	715	rqmts	
						1.3 per process	
Total small panel	KW	56.7	113.4	73.71	147.42	rqmts	
Pump	KW		23		27.6	1.2	
Total	КW		686		890		
RAW supply temperature, T _{in}	°F	85	85				
RAW return temperature, T _{out}	°F	95	100	95	100		
Big panel total flow rate	GPM	191.1	250.3		325.4		
Big panel Quantity		36	36	36	36		
Big panel single flow rate	GPM	5.31	6.95		9.04		
Small panel total flow rate	GPM	38.70	51.60		67.09		
Small panel single flow rate	GPM	4.83	6.45		8.38		
Small panel quantity		8	8	8	8		
Intermediate cooling water							
emperature in	°F	65	65	65	65		
Intermediate cooling water							
temperature out	°F	77	77	77	77		
Total Mass flow rate calculated	GPM	229.83	301.89		392.5		
otal Mass flow rate (Matt						1.3 per process	
Slabaugh provided)	GPM	146.7	339.6		441.5	rqmts	

Equipment Selection and Sizing - Heat Exchanger

- Capacity: 900 KW, actual 950KW
- Type: Tranter Superchanger plate and frame unit
 - a welded unit
 - eliminate leaking
- Material: SS

CS shell and cover - optional

- ASME code compliance
- Design condition: 150Psig @ 200°F
- MAWP: ≥200 Psig
- MMDT: -20 deg. F
- Hot side: Temperature $-\Delta T = 15$ deg.

Tin = 85 deg. F Tout = 100 deg. F

Flow rate – 435 GPM

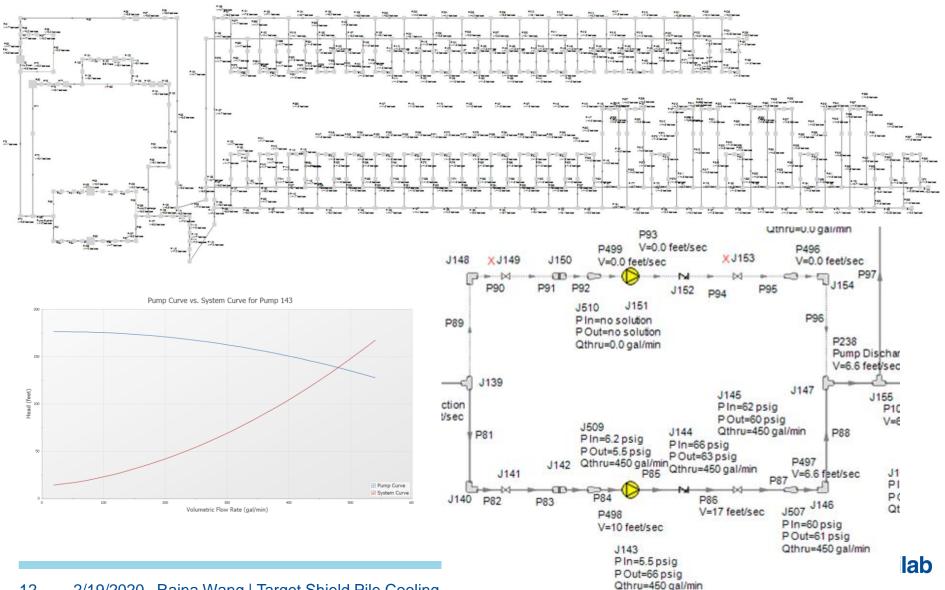

• Cold side: temperature - $\Delta T = 12 \text{ deg.}$

Tin = 65 deg. F Tout = 77 deg. F

🗲 Fermilab

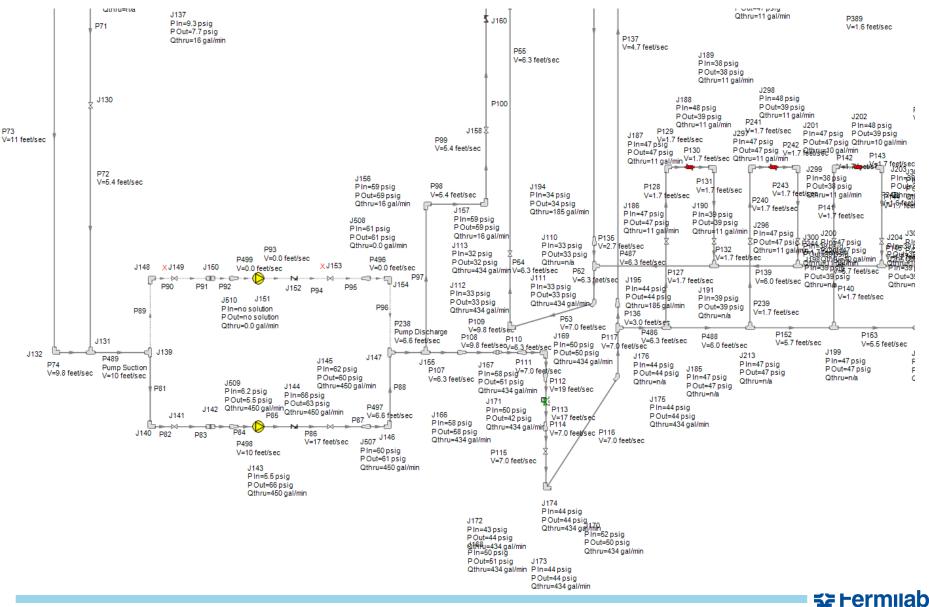
Flow rate – 490 GPM

Equipment Selection and Sizing – Heat Exchanger

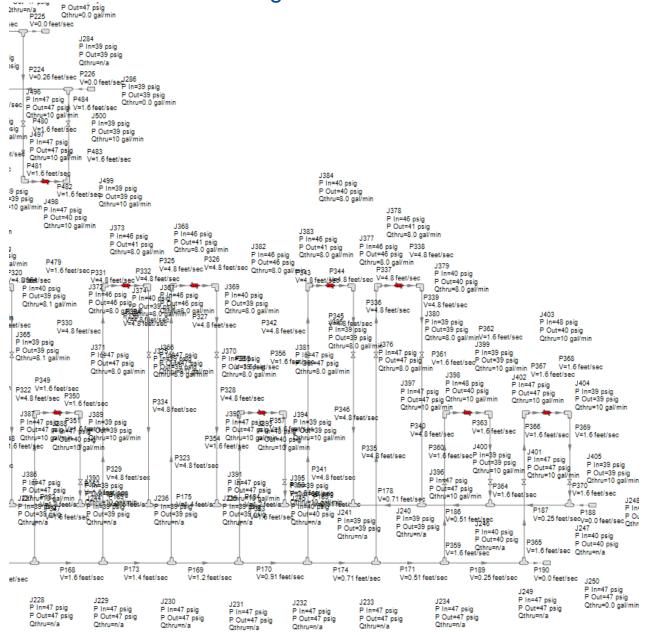


Equipment Selection and Sizing – Pumps, Piping, Control Valves

- Sizing method: Hydraulic simulation
- Sizing technology: AFT Fathom software, version 9
- Multiple operation modes simulated:
 - Design condition (2.4MW beamline): 450 GPM
 - 1.2MW beamline condition: 147 GPM
- Results:
 - Pump: 450 GPM @ 143 ft TDH
 - Pipe header: 5" NPD and branch head 4" NPD
 - Control valve: 3"



Equipment Selection and Sizing – Cont. - AFT Fathom Simulation Results



12 2/19/2020 Raina Wang | Target Shield Pile Cooling

Equipment Selection and Sizing – Cont. - AFT Fathom Simulation Results

Equipment Selection and Sizing – Cont.: - AFT Fathom Simulation Results

14 2/19/2020 Raina Wang | Target Shield Pile Cooling Panel RAW System

🛟 Fermilab

Equipment Selection and Sizing – Cont. - Pump Selected, Sized

- Two Centrifugal Pumps: one op / one standby
- Type: Canned motor centrifugal pumps Sealless
- Capacity Index:
 - 450 GPM @143 ft TDH, meet max. flow requirements of 2.4MW
 - Min. flow: 110 GPM
 - Min. flow meet 1.2 MW beamline requirements: 147 GPM
 - Cut off flow: 100 GPM
 - Shut off head: 175 ft
- Variable speed control: Benefit and radiation degradation
 - based on Numi operation experience

Equipment Selection and Sizing – Cont. - Pump Selected, Sized

NIKKISO

Products and Services Resea

Research and Development About Us Investor Relations

HOME > Products and Services > Pumps and Systems > Canned Motor Pumps

Canned Motor Pumps (Non-Seal® Pumps)

NIKKISO Non-Seal[®] Pumps Leak-free pumps best suited for use with high-temperature and dangerous liquids

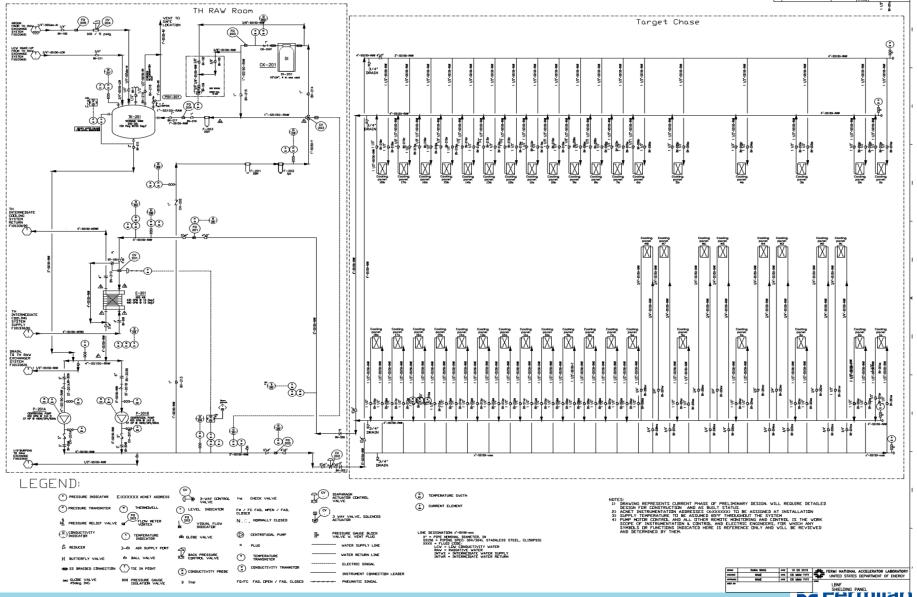
Features	Specifications	Applications	Product Lineup			
Contact Us		Request for Brochure	Model Numbers			

Features

Sealless pumps with leak-proof construction with the pump and motor integrated into one housing.

Main features

Leak-free Adaptable to a wide range of pressures and temperatures Easy to assemble and Compact, space saving design Low vibration and noise Compliant with international and national standards



Equipment Selection and Sizing – Cont. - Detailed Equipment List and Spec

LBNF Target Shield Pile Cooling Panel RAW System - Equipment List and Specification															
		, ,				Operating / Design Condition								Cost	Γ'
#	Tag #	Name	Quantity	Type or model number	Service Fluid	Flow rate (GPM)	/) or volume	Pressu	ure (Psig)	Temperrature (^o F)		Materials	-	(\$)	'
		۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				Operating	Design	Operating	Design	Operating	Design		Unit	Sub-total	1'
1	тк-201	Storage tank	1	SST-500 gallons vertical economy finish vessel 60" dia x 42" s/s x 86" OAH w. nozzles per P&ID	Radioactive water		500 Gallon	5	150 Psig internal / full vacuum external Per ASME BPVC VIII. Div. I, stamped	55.95	200	304L SS	\$29,252	\$29,252.00	
2	P-201A/B	Canned Motor Pumps Centrigugal	2	NC Series, Model NC-A70-8-N5-1S, seal-less, centrifugal, canned motor pump 450 GPM @ 143 TDH, 37 Hp motor @460V/3Phase/60Hz, 3600 RPM, Inlet/outlet nozzle size: 4" / 3" RF flangs Radiation limit: 2 x 10 ⁸ rads	r Radioactive water	153 GPM @ 1.2MW beam line 355 GPM @ 2.4MW beam line	450 GPM	61	150	55 - 85	150	SS316 body & shell; Bearings: Carbon Graphite Type B insert with 316 SS sleeve; Gaskets: 316 SS stainless steel / graphite spiral wound type; Electrical feed through: copper wire, PEEK insulation and spacers, Vespel SP-1 sealant	\$56,500	\$113,000	
3	E-201	Heat exchanger	1	Plate and frame heat exchanger Tranter SPW-055-H-08-108-1-1-W 900 KW capacity, ΔP <=10 Psi @ hot ΔP <=15 Psi cold side		340 GPM @ 2.4MW	435 @hot side 434@cold side	0 - 30 @hot side 0 - 50 @cold side	150	100 in / 85 out @hot side 70 in / 85 out @cold side	-20 / 200	SS316 nozzles, plates & shell; viton gaskets	\$38,708	\$38,708	
		·'		<u> </u>	<u>ا</u>	'	' <u> </u> '	· · · · · · · · · · · · · · · · · · ·	'			All SS316	\$53,283	\$53,283	1
4	DI-201	Deionization bottles	4	SF16 X 65-FER Mixed Bed PEDI 16 x 65 PG tank, 6.5 Ft. ³ w/new IRN-150 MIXED BED RESIN, ½ NPT in/out, ½ "vent, ½" NPT riser	5 Radioactive water	10	12	30	150	85	120	Fibergass tank	\$3,370	\$13,480	
5	СК-201	DI bottle cask	1	48" x 48" x 81 5/8" per Fermilab drawing # 8875.00-ME-488210	N/A	Amb.	Amb.	Amb.	Amb.	Amb.	150		\$22,000	\$22,000	
6	F-201	Signle cartridge filter - µ20	1	Fulfl o [®] BSSB Filter Vessel BSSB-30-1SD 1"NPT, VITON O-RINGS	Radioactive water	10	15	85	150	85	140	316 SS	\$1,060	\$1,060	Pi
7	F-202	Signle cartridge filter - µ5	1	BSSB-30-1SD 1"NPT, VITON O-RINGS	Radioactive water	10	15	85	150	85	140	316 SS	\$1,060	\$1,060	Pi
8	F-203	Signle cartridge filter - µ20	1	Fulfl o [®] BSSB Filter Vessel BSSB-30-1SD 1"NPT, VITON O-RINGS	Radioactive water	10	15	85	150	85	140	316 SS	\$1,060	\$1,060	Pi
		,ı			ļ	'			'				·	\$0	
		Total cost \$							·		I		(<u> </u>	\$234,195	
		·/	1	'	·'	·'		·	′				'		\Box

Fermilab

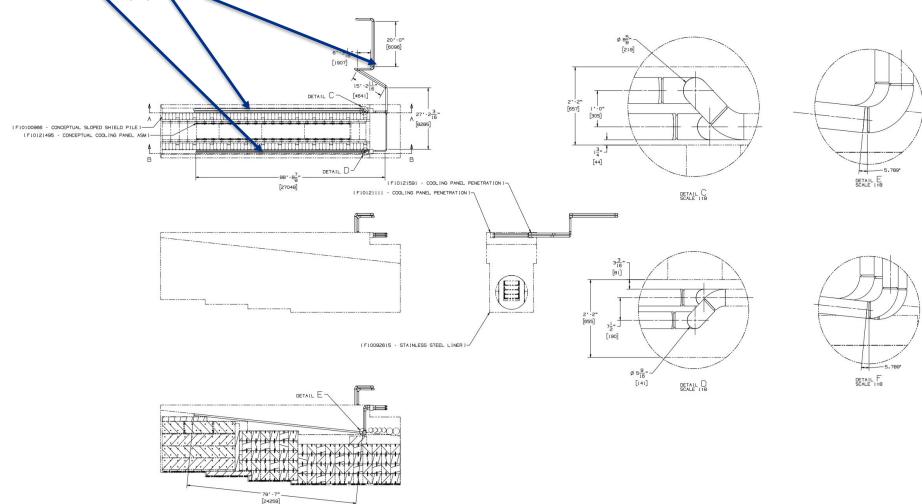
Process Flow – Piping & Instrumentation Diagram

Water Quality Control

- Initial fill: LCW from TH RAW Exchange System
- Impurity concentration increases with time
- Control:
 - Argon blanketing in storage tank
 - Periodic burping predetermined amount of RAW
 - Filtration:
 - $\circ~$ DI loop: 2 stage filtration in series: one 20 μm / one 5 μm
 - Impurity particle size less than: 5µm
 - Extra filter guard in case DI problem: <=20µm
 - Fermi conventional DI bottle 4 in one Cask
 - Maintaining Water resistivity: $4 8 M\Omega \times cm$

ESH – Radiation Risk Control

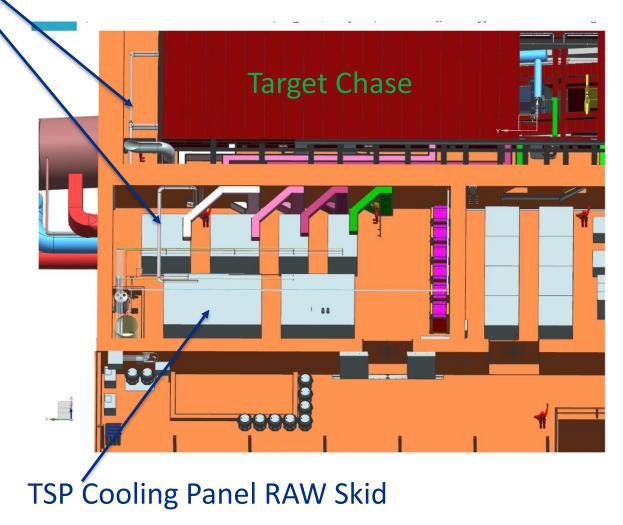
- Risks:
 - Initial LCW to be radioactiviated after short running becoming RAW
 - The prompt radiation dose rates from the RAW skid high!
 - Short-lived radionuclides, large concentrations of the tritium will build up in the systems
- Mechanical Controls:
- To prevent RAW from intermixing with the environment, the cold side cooling water of the heat exchanger is supplied by and discharged to an adjacent Intermediate Water System
- Clean in place containment for RAW leakage, spill and tritium capture


- preventing soil and surface water contamination

5 Fermilab

- Remotely controlled drainage and top up with fresh water used to keep the tritium concentrations at manageable levels
- Wastewater will be disposed of as low-level radioactive waste after cooling-down or decayed
- Radiation hardened materials equipment, piping components
- Electronic devices: P, T, Q, L transmitters installed further away from high radiation area to prevent radiation degradation

Equipment and Piping Layout - Plan View


RAW supply and return head, 5" NPD

Equipment and Piping Layout - 3D Top View

RAW supply and return head, 5" NPD

Fermilab

Equipment and Piping Layout - 3D View

RAW supply and return head, 5" NPD

TSP Cooling Panel RAW Skid

Questions?

Thank You!

By Raina Wang Mechanical Beamline Engineer

Feb. 19, 2020

