LBNF Target Hall Hydrogen Control System Preliminary Design Review

Abhishek Deshpande February 19 & 20, 2020

Overview

- Motivation
- NuMI operations background
- Requirements
- Conceptual design of the system
- On-going research, experimental measurements, and design work
- Future work
- Questions and discussion

Motivation

3

- Water in close proximity to the beam in components such as the horns, disassociates to hydrogen and oxygen (H+O).
- The Lower Explosive Limit (LEL) of H2 in air is ~4%. This is the lowest concentration at which H? can become flammable in the presence of an ignition source.
- Need to dilute the H2 in the systems to keep it below 4%.
- Argon (Ar) gas may be pumped into the beam components to reduce the H2 percentage.
- However, argon gas becomes radioactive, Ar41, which cannot be vented readily into the Target Hall air.
- Other inert gases such as Helium are expensive and have other limitations.
- Thus, a system is required to:
 - Control the H2 percentage in all the RAW systems.
 - Prevent the out-flow of Ar41 to Target Hall air.

ナン化 (Ionization

H₂O⁺ + e

hydrate

ead; OH, H, H2, H2O

H₂O⁺ + OH

-xcitation

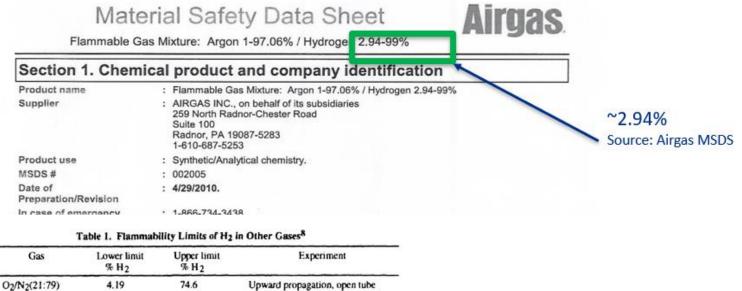
H + OH (H₂ + O) initial yields

Spur reaction

primary vields

NuMI Operations Background

- In NuMI, fresh Argon is pumped into the head spaces of the Horn 1, Horn 2, and TGT RAW systems and is vented into the Target Hall atmosphere. This is done to dilute produced H2.
- Fresh Ar is also pumped into Horn 1 and Horn 2 water spray nozzles.
- The amount of Ar is determined by theoretical estimations on H2 production in above systems at different beam powers.


	Current re	quirement at :	700 kW	Current operations (measured) at ~700 kW				
	(I)	(11)	(111)					
	Hydrogen Gas Produced (gal/day)	Required Argon Purge (sccm) Measured by Mass Flow Meter	Required Argon Purge (cfh) Equivalent to Column II.	E:TRETHF E:H1RFAR E:H2RFAR	Tgt RAW Exp Tank Ar Exh Horn1 Ar Flow Horn2 Ar Flow	627.4 SCCM 429.3 sccm 113.1 sccm		
NOvA ME Target	4.75	625	1.32					
Horn 1	3.3	435	0.92					
Horn 2	0.65	85	0.21					

System Requirements

- Maintain H2 levels in the RAW system expansion tanks below << 4%.
- If Argon is selected as the purge gas, allow Argon-41 that is produced sufficient time to decay before venting the gas to Target Hall atmosphere or other atmospheres.

Conceptual Design of the System: LEL

 Is the LEL really 4% in Argon atmosphere? It is a little lower:

02112(21.13)	4.17	14.0	opward propagation, open rune	
O2/N2(21:79)	9.0		Downward propagation, open tube	
O2/N2(21:79)	9.4	64.8	Closed globe, side ignition	
O2/He(22:78)	7.72	75.7	Upward propagation, open tube	
O2/Ar(21:79)	3.17	76.4	Upward propagation, open tube	
			and the second sec	
O2/CO2(21:79)	5.31	69.8	Upward propagation, open tube	~3.17%
O2/CO2(21:79)	13.1		Downward propagation, open tube	
O2/CO2(21:79	11.9	68.2	Closed globe, side ignition	Source: Coward and Jones (1952),
				Bureau of Mines Bulletin 503

Conceptual Design of the System: LEL

• What is the effect of pressure on LEL; we have conflicting evidence in literature:

Table 1 – Lower flammability limits of hydrogen–air vs initial pressure and temperature.											
Initial pressure (MPa)	21 °C		40 °C		60 °C		75 °C		90 °C		
	LFL(H ₂) (V/V)%	Air (V/V)%									
0.1	4	96	4	96	4	96	4	96	4	96	
0.2	2	98	1.5	98.5	1.5	98.5	1.5	98.5	1.5	98.5	
0.3	1.67	98.33	1.33	98.67	1.33	98.67	1.33	98.67	1.33	98.67	
0.4	1.25	98.75	1.25	98.75	1.25	98.75	1.25	98.75	1.25	98.75	

This says as pressure increases, LEL decreases

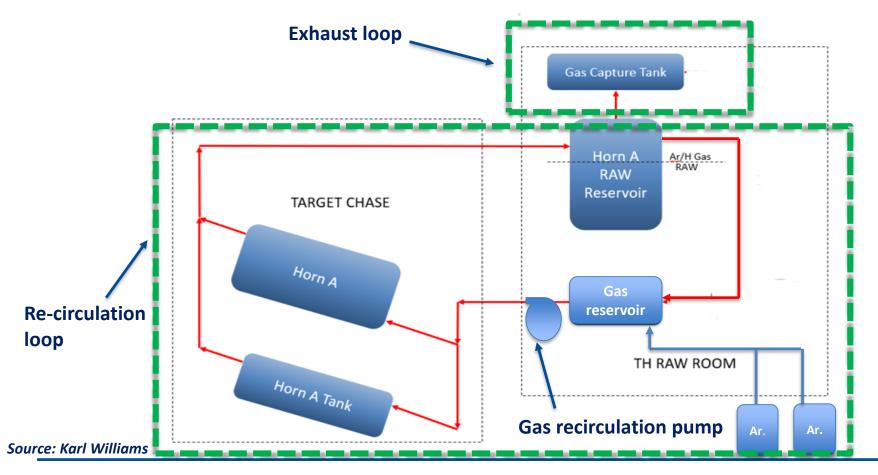
Source: Liu and Zhang (2014), International Journal of Hydrogen Energy

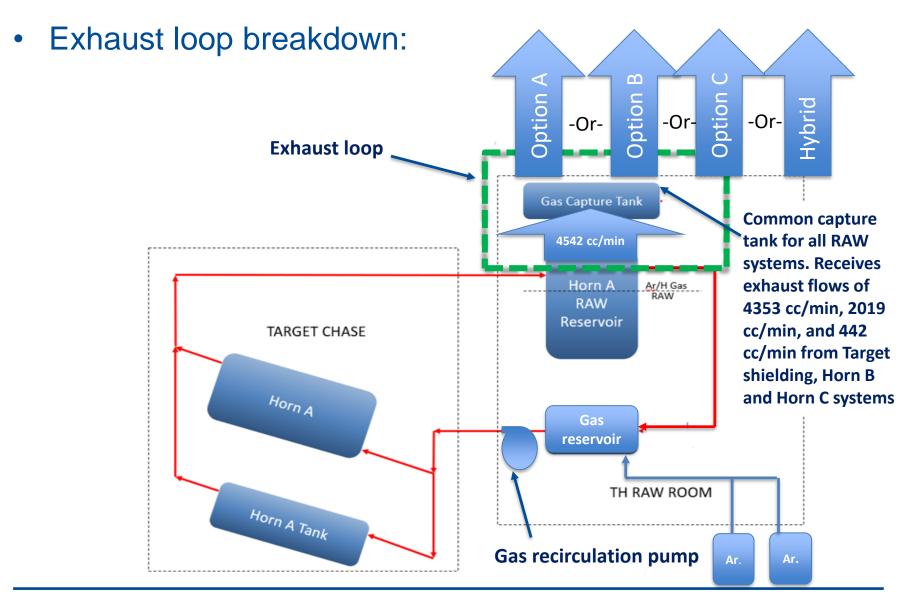
Influence of Pressure.—Figure 5 shows various results obtained for the limits of hydrogen in air under pressures greater than atmospheric (14, 17, 324). The differences are not as great as they may appear to be at first sight, except for lower-limit mixtures at pressures of 1 to 5 atmospheres, and may well be ascribed to different interpretations of experimental results rather than to the experiments themselves; the criterion was 100-percent combustion for the series indicated in the figure by small circles but only about 80 percent for the series represented

This says between 1-5 atms, the LEL is no affected. This is confirmed by other studies, however, the above study, Liu and Zhang (2014), has not been repeated

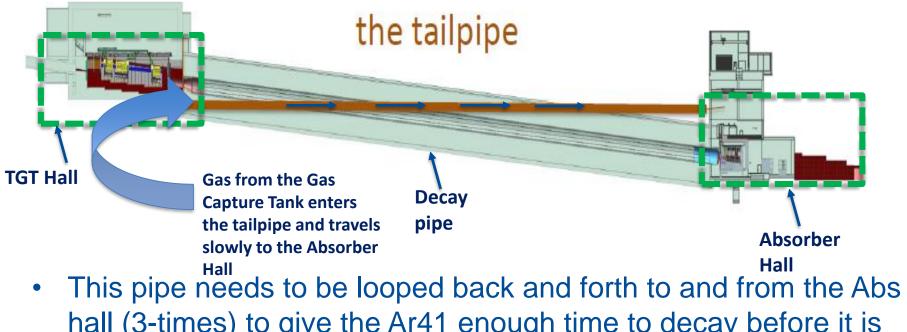
Source: Coward and Jones (1952), Bureau of Mines Bulletin 503

Conceptual Design of the System: Hydrogen production

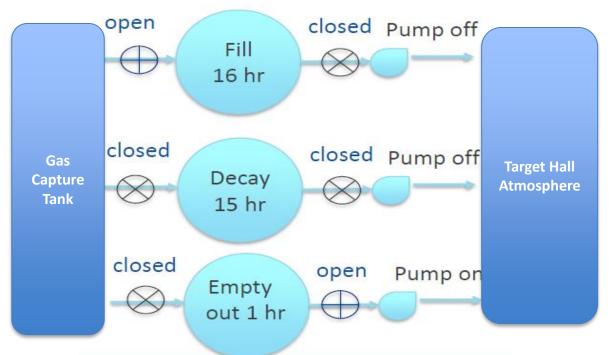

• H2 production in RAW systems for LBNF 2.4 MW operations:


	Hydrog	H2O lost				
RAW system	(gal/sec)	(gal/hr)	(gal/day)	(gal/wk)	(gal/yr)	(gal/yr)
Cooling						
Panels	3.83E-04	1.38	33.12	231.83	6773.98	2.72
Horn_A	4.01E-04	1.44	34.63	242.42	7083.50	2.84
Horn_B	1.79E-04	0.64	15.45	108.17	3160.66	1.27
Horn_C	3.92E-05	0.14	3.38	23.68	692.03	0.28
T_blocks	7.05E-05	0.25	6.09	42.64	1245.91	0.50
Modules	2.55E-06	0.01	0.22	1.54	45.05	0.02
Target						
Helium HX	5.24E-11	1.89E-07	4.53E-06 3.17E-05		9.26E-04	3.72E-07
Totals 1.08E-03		3.87	92.9	<mark>650</mark>	19001	8

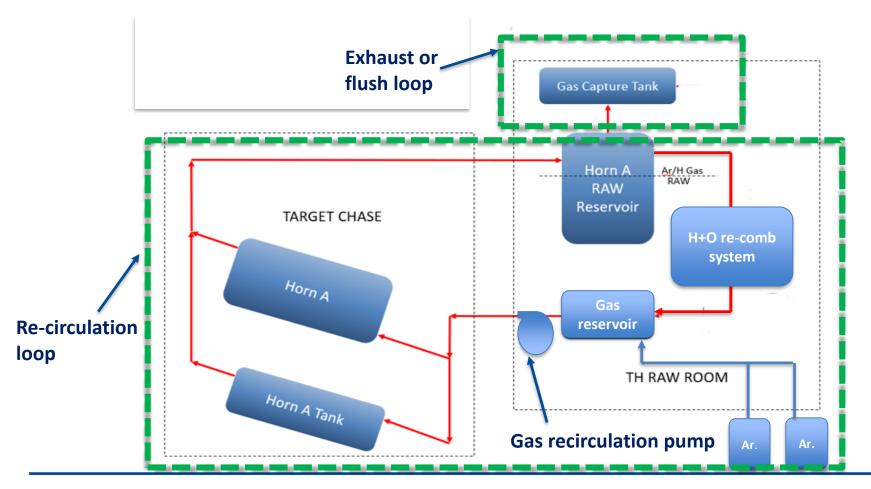
Source: Kamran Vaziri


	H2 prod,	H2 prod,	Flush rate,				
System	Gal/Hr.	cc/min.	cc/min¹				
Target Shield Pile RAW	1.38	87.06	4353				
Horn A RAW	1.44	90.85	4542				
Horn B RAW	0.64	40.38	2019				
Horn C RAW	0.14	8.83	442				
Total flush rate from RAW systems> ² 113							
Notes:							
1). Flush rate to keep H2 below 2%.							
2). Total flush rate if no re-combination is used.							

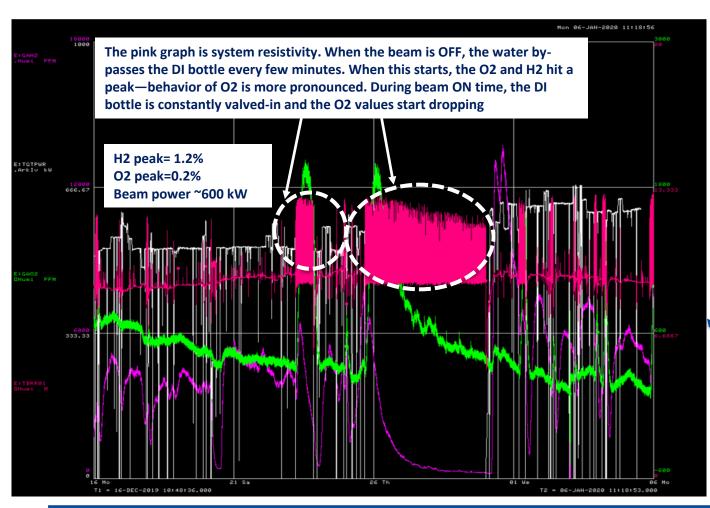
 Below schematic shows a scheme to control H2 levels in Horn A, B, C, and Target shield pile RAW systems:



• Option A: The tailpipe


- hall (3-times) to give the Ar41 enough time to decay before it is exhausted to Absorber Hall atmosphere.
- First order estimates are of a 12" IPS pipe that has an overall length of ~580 m.

• Option B: Dual tank system


- The actual decay time depends on how much Ar41 is produced (must be calculated using MARS).
- The amount of Ar41 produced depends on how much pure Ar we use for flushing and the amount dissolved in the RAW system water.

- Option C: H+O re-combinator in the recirculation loop.
- A Hybrid option will involve pairing a H+O re-combination system with either Option A or Option B.

On-going research, experimental measurements, and design work

• Currently measuring H2, O2, and H2O on NuMI Target RAW System to compare theoretical H2 production to actual numbers.

Gas sampling system

This behavior has been documented at other labs. As per Sekiguchi-San, of Target Systems group at J-Parc, ionexchange system does affect H2 production rate

On-going research, experimental measurements, and design work

- However, the O2 production rate seems to be low in our NuMI systems.
- Perhaps too low to apply re-combination system talked about in Option C.
- Are our experimental numbers correct? Contacted the 6-8 analysis labs to see if they can perform gas analysis of our gas sample to confirm our measurements. None of the labs can handle radioactive sample. Talking to SwRI at this time for help.
- If the O2 production rate is too low, do we introduce pure oxygen to the re-combination system? This may require an additional layer of safety systems.

Future work

• Following is the plan to reach a consensus on the design of the H2 control system:

	Es	timated hou	rs for preliminar	y design of Ll	3NF H+O reco	mbination sys	tem		
ask #		Engineering /drafting effort, hrs. ₁	Modeling effort, hrs. ₂	Project managemen t, hrs.	Review effort, hrs. ₃	Start date ₄	End date ₄	Deliverable Done	Remarks
	the RAW systems in Target Hall and Absorber Hall. Wust								Kamran has all the data to
1	Linclude error bar.	20) 24	1 10	0 16	5 12/13/2019	12/16/2019		start this task
	Determine Ar gas flow rate per RAW system to keep H2							Done	This task can begin after
2	below explosive limit for Horn A, Horn B, and Horn C systems	40) 24	ι ε	3 16	5 1/6/2020	1/10/2020		a rough estimate of Ar diffusivity in water
	Determine Ar41 generation rate in all RAW systems using Argon as a purge gas. The 2.5% rule must be incorporated here. Kamran may need diffusivity of Ar40 from Bengineering in RAW water for this calculation, perhaps?	24	4 24	L 8	3 16	5 1/13/2020	1/15/2020		This task can begin after Task #1. Although, some engineering analysis can begin now
	Determine the hold time needed for Ar41 to acceptable values. Kamran will need diffusivity of Ar41 in Ar40 and also the diffusivity of Ar40 in the RAW water from lengineering.	- 24	On-goi	ing tas	ks	3 1/16/2020	1/22/2020		This task needs completion of Task#3. Although, some engineering analysis can begin now
5	Design (preliminary) the Argon purge recirculation system for RAW systems using Argon purge.	120) 4	L E	3 8	3 1/9/2020	1/30/2020	Design document and presentation highlighting the system feasibility and design	This task can begin now! Also, includes investigatio of vendors for catalyst, recomb, and gas removal systems. This task is independent o
								Done	all tasks. Dependent upon
	Obtain the catalytic recombination efficiency from J-Parc								Hylen, we have this
e	operations	e	5 2	2 8	3 8	12/13/2019	12/16/2019		information already.
	Make a decision on what is the appropriate H+O recombination system for our operations: a). Catalytic recombination b). Absorber tailpipe c).Decay tank system Yor any suitable combination of the above	20) 8	3 16	5 16	5 2/3/2020	2/13/2020		This task requires the completion of all the abov tasks.
8	Create a conceptual design of the H+O recombination using Ball the above inputs including a BOE	200) 12	2 8	3 80	0 1/22/2020	4/16/2020	Design document and presentation highlighting the system feasibility and design	This task can start after Tasks 1, 2,3,4, and 5 have reached 80-90% maturity. Current candidates: Holdi tank vs. tail pipe vs. hybrid system

Thank you! Questions and discussion...