Introduction to Patatrack

Matti Kortelainen
CCE PPS Meeting
3 February 2020

Z= Fermilab

EEEEEEEEEE

NERGY

Office of
Science

Introduction

2

The overall approach

— Reconstruct pixel-based tracks and vertices on the GPU

— Leverage existing support in CMSSW for threads and on-demand reconstruction
» Also explore adding support for heterogeneous computing into the framework

— Minimize data transfer

An earlier step was actually a standalone program for the “hit quadruplets”

— Fully utilizing CPU and GPU, encouraging performance

— First developed on GPU, then ported to CPU

« CPU version became the pixel quadruplet/triplet seeding algorithm since 2017 pixel detector
upgrade in both HLT and offline reconstruction

Results were shown in CHEP 2019

https://indico.cern.ch/event/773049/timetable/?view=standard#76-heterogeneous-online-recons

Some material also from Connecting the Dots 2019

https://indico.cern.ch/event/742793/timetable/?view=standard#93-patatrack-accelerated-pixel

2% Fermilab

2/3/20 Matti Kortelainen | Introduction to Patatrack

https://indico.cern.ch/event/773049/timetable/?view=standard#76-heterogeneous-online-recons
https://indico.cern.ch/event/742793/timetable/?view=standard#93-patatrack-accelerated-pixel

The full workflow

» Copy the raw data to the GPU (~250 kB/event)

* Run multiple kernels (39) to perform the various steps
— Decode the raw data
— Cluster the pixel hits
— Form hit doublets

— Form hit ntuplets (triplets/quadruplets) with a Cellular
Automaton algorithm

— Clean up duplicates
— Vertexing
» Copy only the final results back to the host (optimized
SoA format)
— ~4 MB/event for tracks, ~90 kB/event for vertices
— Convert to legacy format if requested

3 2/3/20 Matti Kortelainen | Introduction to Patatrack

T

S I S
pixel tracks

(SoA)

pixel tracks
(legacy)

O |
pixel vertices

(SoA)

pixel vertices
(legacy)

CPU

G)

raw data
e

)

Co)
digis

S

——

clusters
doublets
ntuplets

—_—

R

pixel tracks
E—

I —

pixel vertices
S —

GPU

2% Fermilab

Top 5 kernels

4

On a Tesla T4, one CPU thread, one concurrent event
— 4000 data events with high-pT jets, average time per event, quadruplets only

220 ps: kernel_find ntuplets()

— Identify ntuplets from the CA connection graph

170 ps: getDoubletsFromHisto()

— Creates doublets from compatible hits in adjacent layers

130 ps: findClus () [dusters |

— Produces clusters on each pixel module

120 ps: kernelBLFit<4> () [pirelracks

— Fit 4-hit tracks with General Broken Lines algorithm

120 ps: kernel_connect()

— Connect hit doublets (create “CA connection graph”)

2/3/20 Matti Kortelainen | Introduction to Patatrack

2% Fermilab

In the big picture (HLT)

5

HCAL: local reconstruction
and calibrations

see Monday's talk in Track 9

pixel tracking:
“High Performance Com(_PUtmg global reconstruction
for High Luminosity LHC”

details on the next slides

~10 % of full HLT
~ 5 % of offline reco

¥
ECAL: local reconstruction , Ck Flrackcandidd™®

and calibrations &,

)

Circles

today we can offload ~24%
of the online reconstruction!

2% Fermilab

2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (legacy)

6

throughput (ev/s)

1000

900

800

700

600

500

400

300

200

100

legacy (on CPU) quadruplets (on GPU) triplets (on GPU)

2/3/20

Matti Kortelainen | Introduction to Patatrack

guadruplets (on CPU)

triplets (on CPU)

pixel tracks and vertices global reco

CPU
+ dual socket Xeon Gold 6130
* 2x16 cores (2 x 32 threads)
* throughput measured on a full node
* 4 jobs with 16 threads

2% Fermilab

Performance (GPU, no output on CPU)

1000 pixel tracks and vertices global reco

CPU
* dual socket Xeon Gold 6130
* 2 x 16 cores (2 x 32 threads)
* throughput measured on a full node
* 4jobs with 16 threads

900
800
700

600 GPU

* single NVIDIA Tesla T4

>0 * 2560 CUDA cores
400 * single job with 10-16 concurrent events
300
200
100
0

legacy (on CPU) quadruplets (on GPU) triplets (on GPU) quadruplets (on CPU) triplets (on CPU)

throughput (ev/s)

2% Fermilab

7 2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (backported algorithms)

8

throughput (ev/s)

1000

900

800

700

600

quadruplets (on GPU) triplets (on GPU)

quadruplets (on CPU)

“Legacy” produces only quadruplets, and has lower efficiency

2/3/20

Matti Kortelainen | Introduction to Patatrack

500
400
300
200
100

0

legacy (on CPU)

triplets (on CPU)

pixel tracks and vertices global reco

CPU
* dual socket Xeon Gold 6130
* 2 x 16 cores (2 x 32 threads)
* throughput measured on a full node
* 4 jobs with 16 threads

GPU
* single NVIDIA Tesla T4
* 2560 CUDA cores
* single job with 10-16 concurrent events

Part of the GPU algorithms were
backported to CPU with an ad-hoc “CUDA
compatibility” layer.

2% Fermilab

Performance (transfer output to CPU)

1000

900

800

700

600

500

400

throughput (ev/s)

300

200

100

0

pixel tracks and vertices global reco

CPU
* dual socket Xeon Gold 6130
* 2 x16 cores (2 x 32 threads)
*» throughput measured on a full node
* 4jobs with 16 threads

GPU
* single NVIDIA Tesla T4

* 2560 CUDA cores

* single job with 10-16 concurrent events
transfer from GPU to CPU

* ondemand

» small impact on event throughput

legacy (on CPU) quadruplets (on GPU) triplets (on GPU) quadruplets (on CPU) triplets (on CPU)

2% Fermilab

9 2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (convert SoA to legacy)

throughput (ev/s)

10

1000

900

800

700

600

2/3/20

quadruplets (on GPU) triplets (on GPU)

Matti Kortelainen | Introduction to Patatrack

quadruplets (on CPU)

500
400
300
200
100

0

legacy (on CPU)

triplets (on CPU)

pixel tracks and vertices global reco

CPU
* dual socket Xeon Gold 6130
e 2 x 16 cores (2 x 32 threads)
* throughput measured on a full node
* 4 jobs with 16 threads

GPU
* single NVIDIA Tesla T4
e 2560 CUDA cores
* single job with 10-16 concurrent events

transfer from GPU to CPU
* ondemand
« small impact on event throughput

conversion to legacy data formats
* ondemand, to be minimised
* small impact on event throughput
* high cost in CPU usage

2% Fermilab

Technical implementation

CUDA streams are used to process multiple events concurrently

— Data from one event not enough to saturate a GPU
— One CUDA stream / branch in the module data dependence DAG / concurrent event
Aim is to utilize both CPU and GPU

— There are no calls to cuda*Synchronize()
« Except one which is mostly a sanity check, we are thinking ways to remove it

— Instead use callback functions to notify the CMSSW framework when CPU work that
waits for GPU work to finish can proceed

» Allows CPU threads to do other work in the meantime
Device and pinned-host memory allocations made through a memory pool

— Currently based on cub::CachingDeviceAllocator
— Most flexible towards minimizing device memory usage compared to alternatives

» Supports multiple GPUs

2% Fermilab

11 2/3/20 Matti Kortelainen | Introduction to Patatrack

Standalone program

* The standalone program in nttps://github.com/makortelipixel-standalone 1S €ssentially a mini-app of
the first kernel in step intended to explore portability technologies
— Contains data from one event
» Currently has implementations for
— CPU (naive)
— CUDA
— Kokkos
— Alpaka (both directly and through CUPLA that provides more CUDA-like interface)
— Data Parallel C++ (oneAPl)

2% Fermilab

12 2/3/20 Matti Kortelainen | Introduction to Patatrack

https://github.com/makortel/pixel-standalone

Backup

2% Fermilab

13 2/3/20 Matti Kortelainen | Introduction to Patatrack

Doublets

. The local reconstruction produces hits
. Doublets are created opening a window depending on the tracking region/beamspot and layer-pair
s The cluster size along the beamline can be required to exceed a minimum value for barrel hits connecting to an endcap layer
. Hits within the bins are connected to form doublets if they pass further “alignment cuts” based on their actual
position
. In the barrel the compatibility of the cluster size along the beamline between the two hits can be required
. The cuts above reduce the number of doublets by an order of magnitude and the combinatorics by a factor 50

¢ ik v, v -
// / 12

14 2/3/20 Matti Kortelainen | Introduction to Patatrack

2% Fermilab

Cellular Automaton -based Hit Chain Maker

The CA is a track seeding algorithm designed for BPint

parallel architectures - ;
FPixl" —(BPx2

It requires a list of layers and their pairings g

* A graph of all the possible connections between FPix BPixt
layers is created

* Doublets aka Cells are created for each pair of layers, in parallel at the same time
* Fast computation of the compatibility between two connected cells, in parallel

* No knowledge of the world outside adjacent neighboring cells required, making it easy to
parallelize

- FPix1* BPixI™

> . FPix1"

]

2t FPix1 "~ BPix2”
FPix2 FP&Z' ; ~ FPixl-

] i

e FPix2 .~ BPix3”
FPixy FPix3) | FPixi

BPix1
BPix2

BPix2
BPix3
BPix3
BPix4

BPix1
~_FPix1*
" BPix2
FPix1*

*BPix3
FPix1*

. * Better efficiency and fake

rejection wrt previous algo

| * Since 2017 data-taking has

become the default track

seeding algorithm for all the

pixel-seeded online and

offline iterations

* In the following, at least four hits are required, but triplets can be kept to recover

efficiency where geometric acceptance lacks one hit

15 2/3/20 Matti Kortelainen | Introduction to Patatrack

13

FPix1*
EPix2*

FPix2*
FPix3*

2% Fermilab

CA compatibility cuts

* The compatibility between two cells is
checked only if they share one hit

* AB and BC share hit B
* In the R-z plane a requirement is
alignment of the two cells

* In the cross plane the compatibility
with the beamspot region

2% Fermilab

16 2/3/20 Matti Kortelainen | Introduction to Patatrack

