
Introduction to Patatrack

Matti Kortelainen
CCE PPS Meeting
3 February 2020

2/3/20 Matti Kortelainen | Introduction to Patatrack

• The overall approach
– Reconstruct pixel-based tracks and vertices on the GPU
– Leverage existing support in CMSSW for threads and on-demand reconstruction

• Also explore adding support for heterogeneous computing into the framework
– Minimize data transfer

• An earlier step was actually a standalone program for the “hit quadruplets”
– Fully utilizing CPU and GPU, encouraging performance
– First developed on GPU, then ported to CPU

• CPU version became the pixel quadruplet/triplet seeding algorithm since 2017 pixel detector
upgrade in both HLT and offline reconstruction

• Results were shown in CHEP 2019
https://indico.cern.ch/event/773049/timetable/?view=standard#76-heterogeneous-online-recons

• Some material also from Connecting the Dots 2019
https://indico.cern.ch/event/742793/timetable/?view=standard#93-patatrack-accelerated-pixel

Introduction

2

https://indico.cern.ch/event/773049/timetable/?view=standard#76-heterogeneous-online-recons
https://indico.cern.ch/event/742793/timetable/?view=standard#93-patatrack-accelerated-pixel

2/3/20 Matti Kortelainen | Introduction to Patatrack

• Copy the raw data to the GPU (~250 kB/event)
• Run multiple kernels (39) to perform the various steps
– Decode the raw data
– Cluster the pixel hits
– Form hit doublets
– Form hit ntuplets (triplets/quadruplets) with a Cellular

Automaton algorithm
– Clean up duplicates
– Vertexing

• Copy only the final results back to the host (optimized
SoA format)
– ~4 MB/event for tracks, ~90 kB/event for vertices
– Convert to legacy format if requested

The full workflow

3

2/3/20 Matti Kortelainen | Introduction to Patatrack

• On a Tesla T4, one CPU thread, one concurrent event
– 4000 data events with high-pT jets, average time per event, quadruplets only

• 220 μs: kernel_find_ntuplets()
– Identify ntuplets from the CA connection graph

• 170 μs: getDoubletsFromHisto()
– Creates doublets from compatible hits in adjacent layers

• 130 μs: findClus()
– Produces clusters on each pixel module

• 120 μs: kernelBLFit<4>()
– Fit 4-hit tracks with General Broken Lines algorithm

• 120 μs: kernel_connect()
– Connect hit doublets (create “CA connection graph”)

Top 5 kernels

4

2/3/20 Matti Kortelainen | Introduction to Patatrack

In the big picture (HLT)

5

~10 % of full HLT
~ 5 % of offline reco

2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (legacy)

6

2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (GPU, no output on CPU)

7

2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (backported algorithms)

8

Part of the GPU algorithms were
backported to CPU with an ad-hoc “CUDA
compatibility” layer.

“Legacy” produces only quadruplets, and has lower efficiency

2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (transfer output to CPU)

9

2/3/20 Matti Kortelainen | Introduction to Patatrack

Performance (convert SoA to legacy)

10

2/3/20 Matti Kortelainen | Introduction to Patatrack

• CUDA streams are used to process multiple events concurrently
– Data from one event not enough to saturate a GPU
– One CUDA stream / branch in the module data dependence DAG / concurrent event

• Aim is to utilize both CPU and GPU
– There are no calls to cuda*Synchronize()

• Except one which is mostly a sanity check, we are thinking ways to remove it
– Instead use callback functions to notify the CMSSW framework when CPU work that

waits for GPU work to finish can proceed
• Allows CPU threads to do other work in the meantime

• Device and pinned-host memory allocations made through a memory pool
– Currently based on cub::CachingDeviceAllocator
– Most flexible towards minimizing device memory usage compared to alternatives

• Supports multiple GPUs

Technical implementation

11

2/3/20 Matti Kortelainen | Introduction to Patatrack

• The standalone program in https://github.com/makortel/pixel-standalone is essentially a mini-app of
the first kernel in step intended to explore portability technologies
– Contains data from one event

• Currently has implementations for
– CPU (naive)
– CUDA
– Kokkos
– Alpaka (both directly and through CUPLA that provides more CUDA-like interface)
– Data Parallel C++ (oneAPI)

Standalone program

12

https://github.com/makortel/pixel-standalone

2/3/20 Matti Kortelainen | Introduction to Patatrack

Backup

13

2/3/20 Matti Kortelainen | Introduction to Patatrack

Doublets

14

2/3/20 Matti Kortelainen | Introduction to Patatrack

Cellular Automaton -based Hit Chain Maker

15

2/3/20 Matti Kortelainen | Introduction to Patatrack

CA compatibility cuts

16

