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Parkes School - Fundamentals of Radio Astronomy II

Any  antenna  can  be  thought  of  as  a  transmitter  as  well  as  a  receiver.
The  directivity  gain  (or  directivity  function)  gives  the  angular
distribution of power radiated and is defined as 

  

Dν, n ≡ 4π pν [n]

∫ⅆ2n pν [n]

where pν[n] is the power radiated per solid angle.  The directivity is the

maximum of this function
D[ν] ≡maxn Dν, n

.

The beam solid angle of an antenna (in steradians) is
Ωeff [ν] ≡

4 π
D[ν]
.

Note that by construction the angle averaged directivity gain is unity:


ⅆn

4 π
Dν, n = 1

The  previous  formulae  had  to  do  with  the  radiated  power  which  is
related  to  the  power  density  supplied  to  the  transmitter  by  an
efficiency  factor ηR[ν] ∈ [0, 1]. ηR[ν]  describes  losses  in  the  system.

some  of  which  may  be  intentional  e.g.  as  a  filter.   The  power  gain
function is given by
  

Gν, n ≡ ηR[ν] Dν, n.

Thinking  of  the  antenna  as  a  receiver,  the  power  frequency  density
(per unit frequency) received  from an unpolarized sky is
Pν = 1

2
ηR[ν] ∫ⅆ

2n Aeff [n] Iν[n]

where  

Aeff  is  the  effective  area  (reception  pattern)  of  the  antenna.

Using the Rayleigh-Jeans brightness temperature pattern

  

TRJν, n ≡ λ2

2 kB
Iν[n]

where kB is Boltzmann’s constant and λ ≡ c /ν is the wavelength. Thus

    

Pν = ηR[ν]
kB
λ2 ∫

ⅆ2n Aeffν, n TRJν, n.

The effective area is related to the directivity gain by

  

Aeffν, n = λ2

4 π
Dν, n.

Thus one finds

  

Pν = ηR[ν] 
ⅆ2n

4 π
Dν, n kB TRJν, n.

Auto-correlation Visibility

An  auto-correlation visibility  is  a  number V[ν] = c[ν] Pν  where  the

proportionality constant, c[ν], defines a calibration.

Temperature Calibration

An  auto-correlation visibility  is  a  number V[ν] = k[ν] Pν  where  the

proportionality  constant,  

k[ν],  defines  a  calibration.   A  calibrated

visibility  in  temperature  units  ,  which  we  denote  by VT ,  is  defined  by
k[ν] = kT[ν] ≡ 1

kB ηR [ν]
 so  that  if  illuminated  by  a  uniform  brightness

pattern TRJν, n = T will take the value VT = T.  With this calibration

  

VT[ν] = 
ⅆ2n

4 π
Dν, n TRJν, n = 1

2 kB
 c
ν
2 

ⅆ2n

4 π
Dν, n Iν[n]

for  an  arbitrary  unpolarized  illumination  pattern.  In  some  cases  it  is
impractical  to  empirically  calibrate  an  antenna  by  illuminating  with  a
uniform brightness pattern.

Unpolarized Point Source

A unpolarized point source at position n★ has brightness pattern

  

Iν[n] = fν δ(2)n, n★

where fν is it’s flux density.  It’s contribution to the visibility is

  

VT★[ν] =
1
8 π

fν
kB

 c
ν
2 Dν, n★

Antenna with a Beam Center

If  the  directive  gain  is  maximized  at  all  frequencies  in  the  same
direction, nbc , which we call the beam center.  Even without a detailed

knowledge  of  the  beam  pattern  one  can  o�en  determine  the  beam
center  from  the  symmetry  of  the  antenna.   If  there  is  a  beam  center
then D[ν] ≡ Dν, nbc.  For an antenna with a beam center, nbc, which

is  the  direction  in  which  the  antenna  is  pointed,  especially  if  the
antenna is steerable. 

If one points an antenna toward a point source, n★ = nbc , then

  

VT★[ν] =
1
8 π

fν
kB

 c
ν
2 D[ν] = 1

2
fν
kB

 c
ν
2 1

Ωeff [ν]
.

Flux Calibration

One  o�en  calibrates  a  receiver  with  a  beam  center  by  pointing  it  at  a
source with a known flux density 

fν★  that is bright enough to dominate

all  other  illumination  and  then  measuring  the  value  of Pν  which  we

denote by 

Pν★.  This is given by

Pν★ = 1
8 π

ηR[ν] 
c
ν
2 D[ν] fν★.

In  this  situation  one  knows  

fν★  and  measures  

Pν★.   If  for  other

observations one defines the calibrated visibility in flux units by
  

VF[ν] =
Pν
Pν
★
fν★

one is using
  

k[ν] = kF[ν] ≡ 1
ηR [ν]

8 π
D[ν]

 ν
c
2 = 2

ηR [ν]
1

Ωeff [ν]
 ν
c
2

and

  

VF[ν] = 2  νc 
2
 ⅆ2n

Dν,n

D[ν]
kB TRJν, n =  ⅆ2n

Dν,n

D[ν]
Iν[n]

so the contribution of a point source is

  

VT★[ν] =
Dν,n★

Dν,nbc
fν .

Note  if  one  doesn’t  know  the Dν, n  one  cannot  determine fν  from

VT★[ν] unless 

n★ = nbc.  One can map out the beam pattern by pointing

at  multiple  point  sources  if  one  has  a  steerable  telescope  and  the
beam is not much effected by pointing in different directions, which is
not always the case.

Cas A calibration

We start with raw visibilities (output of the correlator) Vi,iraw[ν].  When

we  point  the  beam  centers  at  Cas  A  we  measure  

Vi,i
raw,CasA[ν]

 while

when  we  point  away  from  Cas  A  we  obtain  a  much  smaller  number
Vi,i
raw,0[ν]

 which is mostly thermal noise from the LNA.  Since we know

the  flux  density  of  Cas  A,  which  is fνCasA ,  we  define  the  visibilities  in

flux density units as

Vi,iF [ν] ≡ fνCasA
Vi,i
raw[ν]

Vi,i
raw,CasA [ν]-Vi,i

raw,0 [ν]

so the contribution to the visibility of Cas A when pointed at Cas A is
Vi,i
F,CasA[ν] = fνCasA.

John has provided us the visibilities calibrated in flux units.

In  temperature  units  the  contribution  to  the  visibility  of  Cas  A  when
pointed at Cas A should be

Vi,i
T,CasA[ν] = 1

8 π
fν
CasA

kB
 c
ν
2 D[ν]

where  

kB  is  Boltzmann’s  constant  and  

D[ν]
 is  the  directivity  of  the

beam.  The  conversion  factor  from  flux  density  units  to  temperature
units is
Vi,i
T,CasA [ν]

Vi,i
F,CasA [ν]

= 1
8 π

1
kB

 c
ν
2 D[ν]

so more generally
Vi,iT [ν] =

1
8 π

1
kB

 c
ν
2 D[ν] Vi,iF [ν]

The directivity of an azimuthally symmetric beam centered at nbc  is

  

D[ν] ≡
4 π Bν,nbc

∫ⅆ2n Bν,n

For a Gaussian beam 

  

Bν, n ∝ ⅇ
- 12

∠n,nbc
σ[ν]

2

so in the small angle approximation
  

D[ν] = 4 π

2 π ∫0
∞ⅆθ θ ⅇ

-
1
2 

θ
σ[ν]


2 = 2

σ[ν]2

(where σ[ν]2  is in radians).  Thus for small angle Gaussian beams

  

Vi,iT [ν] =
1
4 π

1
kB

 c
νσ[ν]


2
Vi,iF [ν].

The FWHM of a Gaussian beam is defined by

  

1
2
= ⅇ

- 12 FWHM[ν]/2
σ[ν]


2

or

  

FWHM[ν] = 2 2 ln[2] σ[ν]

so

  

D[ν] = 16 ln[2]
σ[ν]2

= 16 ln[2]2

FWHM[ν]2

and

  

Vi,iT [ν] =
2
π

1
kB

c ln[2]
ν FWHM[ν]

2
Vi,iF [ν]

where FWHM[ν] is in radians.

For the Tianlai dishes
  

FWHM[ν] ≈ 4.36 ° (750 MHz /ν)

so
  

D[ν] = 16 ln[2]
4.36 π

180 
2 

ν

750 MHz
2 = 1915.22  ν

750 MHz
2

and

  

Vi,iT [ν] =
2
π

1
kB

c ln[2]

4.36 π
180 750 MHz

2
Vi,iF [ν] = 8.81888

mK
Jy
Vi,iF [ν].

The π

180
 converts  from  degrees  to  radians.  There  is  no  frequency

dependence in this conversion factor.

To  convert  to  milliKelvin  units  I  multiply  the  numbers  in  Johns
calibrated  files  by  8.81888.   For  example  the  mean  

V2 V,2 VT [ν]
 during

the 9 nights is 114442mK = 114.442 K.

Mathematica Computation
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