

Parkes School - -undamental of of Radio Astronomy || Any antenna can be though of as a transmitter as well as a receiver.
The erivectivity gain or directivity fenction) gives the angular
distribution of power radiated and is defined as

Thinking of the antenna as a receiver, the power frequency densit

where $A_{\text {ef }}$ is the effective area (reception pottern) of the antenna.
Using the Royleigh.-.eans brightness temperature epattern

Auto-correlation Visibilty

Temperature Calibration
An auto-corelation visibility is a number $V[V]=k[\mid] P_{y}$ where the
proportionality constant, $k[\mid]$ defines a calibration. A calibrated
 patter $T_{R}[V, \hat{r}]=T$ will take the value $T_{T}=T$. with this calibration
 for an arbitray unpolarized illumination pattern. In some cases it it
impractical to empiricaly calibrate an antenna by illuminating with uniform brightness patter

Antenna with a Beam Center
If the directive gain is maximized at all frequencies in the sam direction, $\hat{\eta}_{c}$ which we call the beam centere Even without deteailed
knowiedge of the beam pattern one can often determine the beam knowledge of the beam pattern one can often determine the beam
center from the symmetry of the antenna. If there is a beam center
then $D(1) \equiv D \mid v, \hat{n}_{c c}$. For an antenna with a beam center, $\hat{n}_{0, c}$, which
 antenna is steerable.
 Flux Calibration
One often calibrates a receiver with a beam center by pointing it at
source with a known fux density y t that is stright enoughto do dominate source with a known flux density y t that is bright enough to dominate
all other illumination and then measuring the value of P p which we

observations one defines the calibrateded visbibityry in fuxux units by

Cas A calibration

 the flux density of Cas A, which is ffost, we define the visibilities in

John has provided us the visibititie calibrated in fux units.
In temperature units the contribution to the visibility of Cas A when
pointed at cas A should be

where k_{B} is Boltzmann's constant and $D[\mid$ is the directivity of the
heam. The conversion factor from flux density uits to tem

Fw
so
sill
$=2$
$2 \ln [2]$
$\sigma l \mid$

For the Tianla ilishes
FwHMM[1/ 4.366° (750 MHz/

The $\frac{\pi}{\text { bed }}$ converts from degres to radians. There is no frequenc,
dependence in this conversion factor.
 the 9 nights is $114442 \mathrm{mK}=114.42 \mathrm{~K}$.
Mathematica Computation
$\frac{16 \log [2]}{\left(4.36 \ln _{120}^{120}\right)^{2}}$
1915.22

