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Quantum Supremacy

Frank Arute et al. “Quantum supremacy using a programmable superconducting processor”. In: Nature
574.7779 (2019), pp. 505–510.



Quantum Chemistry on Quantum Computers

Abhinav Kandala et al. “Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets”. In: Nature 549.7671 (2017), p. 242.
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Variational Principle

I Solve for approximate, variational eigenvalue by optimizing the energy of a
parameterized wavefunction ansatz |ψ(θ)〉

I Variational principle ensures

E0 ≤
〈ψ(θ)|H|ψ(θ)〉
〈ψ(θ)|ψ(θ)〉 ,

I Variational Monte Carlo does this on classical computers
I The hope is that a quantum realization can utilize non-trivial wavefunctions which

would be much more difficult to prepare on a classical computer



Variational Quantum Eigensolver

PJJ O’Malley et al. “Scalable quantum simulation of molecular energies”. In: Physical Review X 6.3 (2016),
p. 031007.



Example VQE Calculation

Kandala et al., “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets”.



Variational Quantum Eigensolver

I Hybrid quantum/classical algorithm
I Quantum computer provides energy estimation, classical computer does optimization

I Currently limited to small molecules in small basis sets (sto-3g)
I Variational

I Need good ansatz and efficient optimization

I Still limited by decoherence



Variational Quantum Eigensolver

I Hybrid quantum/classical algorithm
I Quantum computer provides energy estimation, classical computer does optimization

I Currently limited to small molecules in small basis sets (sto-3g)
I Variational

I need good ansatz and efficient optimization

I Still limited by decoherence
I Classical quantum chemistry methods are very powerful



Selected Heat-Bath Configuration Interaction
I Full configuration interaction quality energies for Cr2 28e, 4z basis (208 orbitals) –

Hilbert space size of 1042

Junhao Li et al. “Accurate many-body electronic structure near the basis set limit: Application to the chromium
dimer”. In: Physical Review Research 2.1 (2020), p. 012015.



Quantum Dynamics on Quantum Computers

I As opposed to eigenvalue estimation, fully quantum dynamics has been a much
harder problem for classical computers

I State-of-the-art, fully quantum dynamics simulations are much more limited
I Quantum computers have the potential to solve these problems exponentially faster
I Algorithms specifically designed for noisy quantum devices (like VQE) will be

necessary to use near-term quantum devices for chemical applications



Restarted Quantum Dynamics

Prepare
|ψ(t)〉 = |ψ(θo)〉

Timestep
|ψ(t+ ∆t)〉 = Ũ(∆t)|ψ(t)〉

Minimize(
1− |〈ψ(t+ ∆t)|ψ(θn)〉|2

)2

|ψ(θn)〉 ≈ |ψ(t+ ∆t)〉

Trotterization
t→ t+ ∆t
θn → θo

Matthew Otten, Cristian L Cortes, and Stephen K Gray. “Noise-Resilient Quantum Dynamics Using
Symmetry-Preserving Ansatzes”. In: arXiv:1910.06284 (2019).



Restarted Quantum Dynamics

I Like VQE, RQD is a hybrid quantum/classical algorithm
I Quantum computer provides time-stepping and fidelity estimation, classical

computer does optimization

I Requires good ansatz and efficient optimization
I As long as long as a single time-step (via, e.g., a Trotterization procedure) can be

taken with good fidelity, many time steps can be taken by restarting the dynamics
from an optimized wavefunction

I Allows for much longer dynamical studies



Restarted Quantum Dynamics Results
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Noise-Resilience of RQD



Restarted Quantum Dynamics
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Applications of RQD

I Interacting spins/fermions on lattices (e.g., Hubbard models)
I Quantum field theory dynamics (e.g., Schwinger models)
I Chemical systems

I Electronic wave packet dynamics
I Photosynthetic complexes, such as Fenna-Matthews-Olson (FMO), and other

excitonic systems
I Fully quantum nuclear wave packet dynamics on a Born-Oppenheimer potential

surface (e.g., reactive chemistry of H + H2)
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Decoherence
I Inevitable in near-term quantum hardware
I Represents the undesirable coupling to the outside world
I Can be fixed via error correction, but at an extremely high overhead in number of

qubits



Noise Extrapolation

Ying Li and Simon C Benjamin. “Efficient variational quantum simulator incorporating active error
minimization”. In: Physical Review X 7.2 (2017), p. 021050.



Noise Extrapolation for Quantum Chemistry

Abhinav Kandala et al. “Error mitigation extends the computational reach of a noisy quantum processor”. In:
Nature 567.7749 (2019), p. 491.



Generalization to Many Noise Sources

I Instead of a single noise source with rate γ, we consider many noise sources with
rates γj
I Think of this as T1 and T2 times for each qubit

〈A〉 = A0 +
∑

j

γjAj +
∑

j

∑

k

γjγkAjk + · · · ,

I where A0 is the noise-free observable value and Aj is the effect of noise rate j on
the observable.

I We do not have knowledge of A0 and Aj , Ajk , etc, but we can vary γj and, with
truncation, fit these values

Matthew Otten and Stephen K Gray. “Recovering noise-free quantum observables”. In: Physical Review A 99.1
(2019), p. 012338.



Example ‘Hypersurface’



Hypersurface Error Recovery
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NV Center Magnetometer
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Hypersurface Recovery

I Different Regimes:
I Quantum Sensor: very high order, small number of noise terms
I Quantum Computer: low order, very large number of noise terms

I Allows for another type of ‘parallelism’; run one algorithm on many slightly
different quantum computers
I Combine results in post processing

I A good understanding of the noise sources is important
I Well characterized noise rates, {γ}, are necessary
I The resulting extrapolation can be ill-behaved
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Many Different Quantum Architectures

I Trapped ion, silicon quantum dot, superconducting qubit,
photons, etc, have all demonstrated limited use in quantum
computing applications

I Novel qubits are still being developed and could have
interesting technological advantages
I Chemical and materials systems are at the forefront of novel

qubit technologies

UMd JQI. The Future of Ion Traps. http://jqi.umd.edu/news/future-ion-traps. 2017.
TF Watson et al. “A programmable two-qubit quantum processor in silicon”. In: Nature (2018).
JS Otterbach et al. “Unsupervised Machine Learning on a Hybrid Quantum Computer”. In: arXiv preprint
arXiv:1712.05771 (2017).



Hybrid Quantum Systems

Gershon Kurizki et al. “Quantum technologies with hybrid systems”. In: Proceedings of the National Academy
of Sciences 112.13 (2015), pp. 3866–3873.



Open Quantum Systems

I All qubit technologies share one key feature: the control and processing of
quantum information in time and the inevitable decoherence

I This can be modeled with the Lindblad master equation

∂ρ

∂t
= − i

~
[H + H(t), ρ] + L(C )[ρ],

I where H is the natural system Hamiltonian, H(t)
represents the physical application of gates, and L[C ](ρ)
represents decoherence from coupling with the
environment



Quantum Dot Entanglement
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Matthew Otten et al. “Origins and optimization of entanglement in plasmonically coupled quantum dots”. In:
Physical Review A 94.2 (Aug. 2016), p. 022312.



NV Center Cooling of a Mechanical Resonator

E R MacQuarrie et al. “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature
excited state spin–strain interaction”. In: Nature Communications 8 (Feb. 2017), p. 14358.



Missing Error Sources?
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Simulating Realistic Quantum Information Devices

I Density matrix is 2n × 2n
I Much more memory intensive than wavefunction
I Need high-performance computing (QuaC)

I Careful understanding of the important physics for the given architecture is
necessary
I What are the Hamiltonian parameters? What pulse represents what gate? What

noise terms are dominant?
I Other levels of theory (e.g., electronic structure) or experimental data often necessary

I But, we can gain substantial understanding and better performance with
high-fidelity simulations



QuaC Features

I Simulate arbitrary (and possibly time-dependent) Hamiltonians and Lindbladians
I n level systems, not just qubits
I microwave pulses, etc

I Distributed memory parallelism
I ‘Easy to use’ interface
I Read circuits generated from cirq, qiskit, Forest (Rigetti), ProjectQ



Iterative Design



Conclusion
I Practical applications of quantum computers, especially within chemistry, are

within reach
I New algorithms, less expensive error mitigation, and better hardware are necessary

to achieve these applications

Prepare
|ψ(t)〉 = |ψ(θo)〉

Timestep
|ψ(t+ ∆t)〉 = Ũ(∆t)|ψ(t)〉

Minimize(
1− |〈ψ(t+ ∆t)|ψ(θn)〉|2

)2

|ψ(θn)〉 ≈ |ψ(t+ ∆t)〉

Trotterization
t→ t+ ∆t
θn → θo

Funding from Maria Goeppert Mayer Fellowship. otten@anl.gov
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