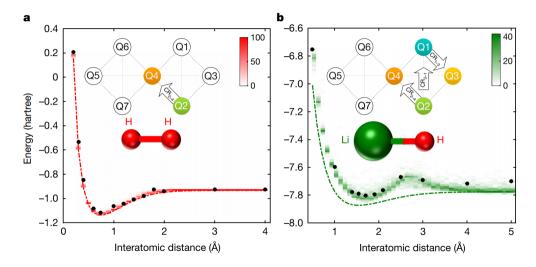
Achieving Practical Applications of Quantum Computers

Matthew Otten otten@anl.gov

February 7th, 2020

Quantum Supremacy

Article


Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5	Frank Arute', Kunal Arya', Ryan Babbush', Dave Bacon', Joseph C. Bardin ¹³ , Rami Barends', Rupak Biswas ¹ , Sergio Boixo', Fernando G. S. L. Brandao ¹⁴ , David A. Buell', Brian Burkett', Yu Chen', Zjun Chen', Ben Chiaro', Roberto Collins', William Courtney', Andrew Dunsworth', Edward Farhi', Brooks Foxen ¹⁵ , Austin Fowler', Craig Gidney', Marissa Giustina', Rob Graff', Keith Guerin', Steve Habegger', Matthew P. Harrigan', Michael J. Hartmann ¹⁴ , Alan Ho', Markus Hoffmann', Trent Huang', Travis S. Humble', Sergei V. Isakovi, Evan Jeffrey', Zhang Jiang', Dvir Kafri', Kostyantyn Kechedzhi', Julian Kelly', Paul V. Klimov', Sergey Knysh', Alexander Korotkov ¹³ , Fedor Kostritsa', David Landhuis', Mike Lindmark', Erik Lucero', Dmitry Lyakh ⁶ , Salvatore Mandrà ¹⁰³ , Darod R. McClean', Matthew McEwen ³ , Anthony Megrant', Xiao Mi', Kristel Michielsen ¹¹³ , Masoud Mohseni', Josh Mutus', Ofer Naaman', Matthew Neeley', Charles Neill', Murphy Yuezhen Niu', Eric Ostby', Andra Petukhov', Jonn C. Natt', Chris Quintana', Elaeno G. Rioffelf', Pedram Roushan', Nicholas C. Rubin', Daniel Sank', Kevin J. Satzinger', Vadim Smelyanskiy', Kevin J. Sung ¹³³ , Matthew D. Trevithick', Amit Vainsencher', Benjamin Villalonga ¹⁴ , Theodore White', Z. Jamie Yao', Ping Yeh', Adam Zalcman', Hartmut Neven''s John M. Martinis ^{15,44}
Received: 22 July 2019	
Accepted: 20 September 2019	
Published online: 23 October 2019	

 Frank Arute et al. "Quantum supremacy using a programmable superconducting processor". In: Nature

 574.7779 (2019), pp. 505–510.

Quantum Chemistry on Quantum Computers

Abhinav Kandala et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets". In: Nature 549.7671 (2017), p. 242.

Hybrid Quantum/Classical Algorithms

Error Mitigation

Design of Novel Material and Chemical Systems for QIS Applications

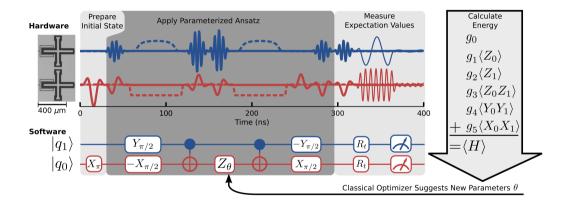
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Hybrid Quantum/Classical Algorithms

Error Mitigation

Design of Novel Material and Chemical Systems for QIS Applications

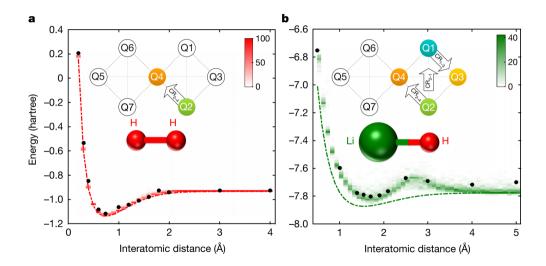
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○


Variational Principle

- Solve for approximate, variational eigenvalue by optimizing the energy of a parameterized wavefunction ansatz $|\psi(\theta)\rangle$
- Variational principle ensures

$$E_0 \leq rac{\langle \psi(heta) | H | \psi(heta)
angle}{\langle \psi(heta) | \psi(heta)
angle},$$

- Variational Monte Carlo does this on classical computers
- The hope is that a quantum realization can utilize non-trivial wavefunctions which would be much more difficult to prepare on a classical computer


Variational Quantum Eigensolver

PJJ O'Malley et al. "Scalable quantum simulation of molecular energies". In: Physical Review X 6.3 (2016),

 p. 031007.

Example VQE Calculation

Kandala et al., "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets" - 🔊 🖉

Variational Quantum Eigensolver

- Hybrid quantum/classical algorithm
 - Quantum computer provides energy estimation, classical computer does optimization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ めへぐ

- Currently limited to small molecules in small basis sets (sto-3g)
- Variational
 - Need good ansatz and efficient optimization
- Still limited by decoherence

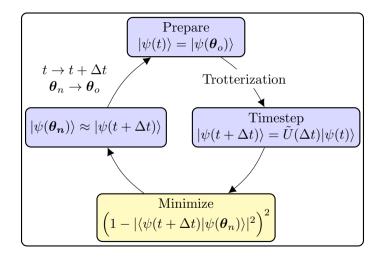
Variational Quantum Eigensolver

- Hybrid quantum/classical algorithm
 - Quantum computer provides energy estimation, classical computer does optimization

- Currently limited to small molecules in small basis sets (sto-3g)
- Variational
 - need good ansatz and efficient optimization
- Still limited by decoherence
- Classical quantum chemistry methods are very powerful

Selected Heat-Bath Configuration Interaction

 Full configuration interaction quality energies for Cr₂ 28e, 4z basis (208 orbitals) – Hilbert space size of 10⁴²


Junhao Li et al. "Accurate many-body electronic structure near the basis set limit: Application to the chromium dimer". In: *Physical Review Research* 2.1 (2020), p. 012015.

Quantum Dynamics on Quantum Computers

- As opposed to eigenvalue estimation, fully quantum dynamics has been a much harder problem for classical computers
- State-of-the-art, fully quantum dynamics simulations are much more limited
- Quantum computers have the potential to solve these problems exponentially faster

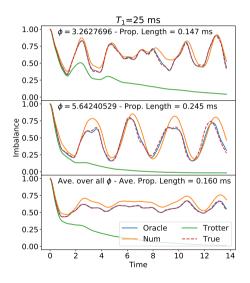
 Algorithms specifically designed for noisy quantum devices (like VQE) will be necessary to use near-term quantum devices for chemical applications

Restarted Quantum Dynamics

Matthew Otten, Cristian L Cortes, and Stephen K Gray. "Noise-Resilient Quantum Dynamics Using

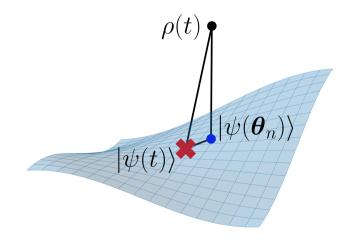
 Symmetry-Preserving Ansatzes". In: arXiv:1910.06284 (2019).

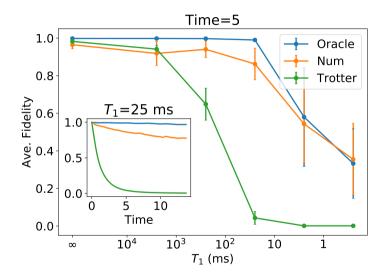
Restarted Quantum Dynamics


Like VQE, RQD is a hybrid quantum/classical algorithm

- Quantum computer provides time-stepping and fidelity estimation, classical computer does optimization
- Requires good ansatz and efficient optimization
- As long as long as a single time-step (via, e.g., a Trotterization procedure) can be taken with good fidelity, many time steps can be taken by restarting the dynamics from an optimized wavefunction

Allows for much longer dynamical studies


Restarted Quantum Dynamics Results



◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Noise-Resilience of RQD

Restarted Quantum Dynamics

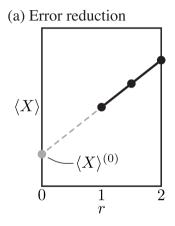
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applications of RQD

- Interacting spins/fermions on lattices (e.g., Hubbard models)
- Quantum field theory dynamics (e.g., Schwinger models)
- Chemical systems
 - Electronic wave packet dynamics
 - Photosynthetic complexes, such as Fenna-Matthews-Olson (FMO), and other excitonic systems
 - Fully quantum nuclear wave packet dynamics on a Born-Oppenheimer potential surface (e.g., reactive chemistry of H + H₂)

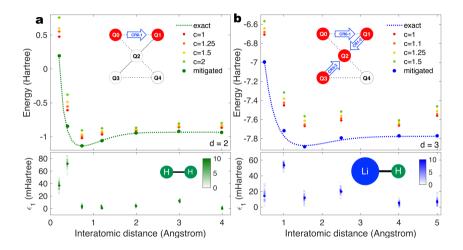
Hybrid Quantum/Classical Algorithms

Error Mitigation


Design of Novel Material and Chemical Systems for QIS Applications

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Decoherence

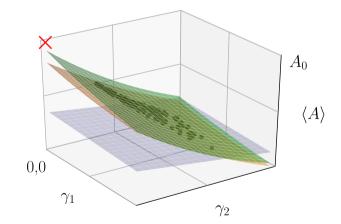

- Inevitable in near-term quantum hardware
- Represents the undesirable coupling to the outside world
- Can be fixed via error correction, but at an extremely high overhead in number of qubits

Noise Extrapolation

Ying Li and Simon C Benjamin. "Efficient variational quantum simulator incorporating active error minimization". In: Physical Review X 7.2 (2017), p. 021050. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

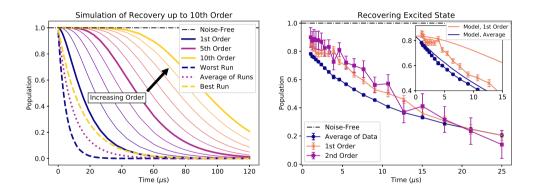
Noise Extrapolation for Quantum Chemistry

Abhinav Kandala et al. "Error mitigation extends the computational reach of a noisy quantum processor". In: Nature 567.7749 (2019), p. 491.

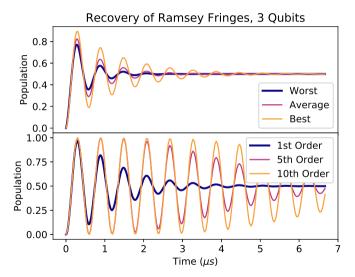

Generalization to Many Noise Sources

- ▶ Instead of a single noise source with rate γ , we consider many noise sources with rates γ_j
 - Think of this as T_1 and T_2 times for each qubit

$$\langle A \rangle = A_0 + \sum_j \gamma_j A_j + \sum_j \sum_k \gamma_j \gamma_k A_{jk} + \cdots,$$


- where A₀ is the noise-free observable value and A_j is the effect of noise rate j on the observable.
- ▶ We do not have knowledge of A_0 and A_j , A_{jk} , etc, but we can vary γ_j and, with truncation, fit these values

Example 'Hypersurface'


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

Hypersurface Error Recovery

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NV Center Magnetometer

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Hypersurface Recovery

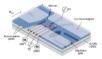
Different Regimes:

- Quantum Sensor: very high order, small number of noise terms
- Quantum Computer: low order, very large number of noise terms
- Allows for another type of 'parallelism'; run one algorithm on many slightly different quantum computers

- Combine results in post processing
- A good understanding of the noise sources is important
- Well characterized noise rates, $\{\gamma\}$, are necessary
- The resulting extrapolation can be ill-behaved

Hybrid Quantum/Classical Algorithms

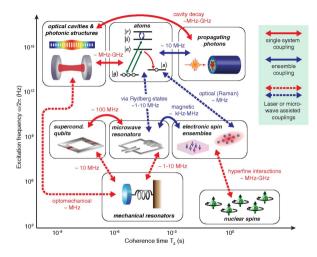
Error Mitigation


Design of Novel Material and Chemical Systems for QIS Applications

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

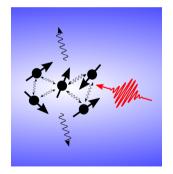
Many Different Quantum Architectures

- Trapped ion, silicon quantum dot, superconducting qubit, photons, etc, have all demonstrated limited use in quantum computing applications
- Novel qubits are still being developed and could have interesting technological advantages
 - Chemical and materials systems are at the forefront of novel qubit technologies

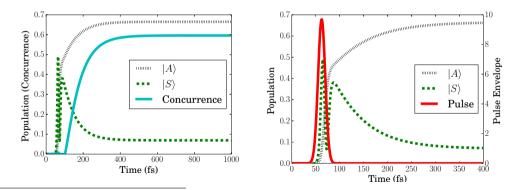


UMd JQI. *The Future of Ion Traps.* http://jqi.umd.edu/news/future-ion-traps. 2017. TF Watson et al. "A programmable two-qubit quantum processor in silicon". In: *Nature* (2018). JS Otterbach et al. "Unsupervised Machine Learning on a Hybrid Quantum Computer". In: *arXiv preprint arXiv:1712.05771* (2017).

Hybrid Quantum Systems


Gershon Kurizki et al. "Quantum technologies with hybrid systems". In: Proceedings of the National Academyof Sciences 112.13 (2015), pp. 3866–3873.<</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><</td><

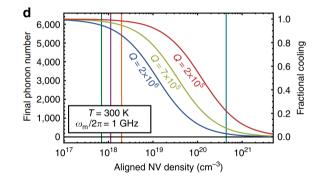
Open Quantum Systems


- All qubit technologies share one key feature: the control and processing of quantum information in time and the inevitable decoherence
- > This can be modeled with the Lindblad master equation

$$rac{\partial
ho}{\partial t} = -rac{i}{\hbar} [H + H(t),
ho] + L(C)[
ho],$$

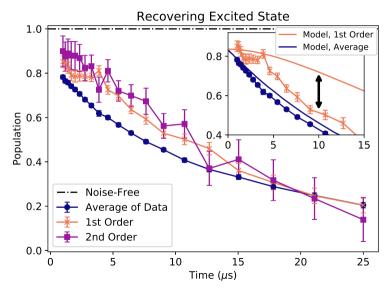
where H is the natural system Hamiltonian, H(t) represents the physical application of gates, and L[C](ρ) represents decoherence from coupling with the environment

Quantum Dot Entanglement



 Matthew Otten et al. "Origins and optimization of entanglement in plasmonically coupled quantum dots". In:

 Physical Review A 94.2 (Aug. 2016), p. 022312.


NV Center Cooling of a Mechanical Resonator

E R MacQuarrie et al. "Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction". In: Nature Communications 8 (Feb. 2017), p.«14358. A + (2) +

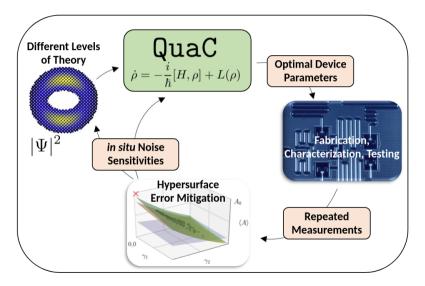
Missing Error Sources?

・ロト・日本・モート 中国・ション

Simulating Realistic Quantum Information Devices

• Density matrix is $2^n \times 2^n$

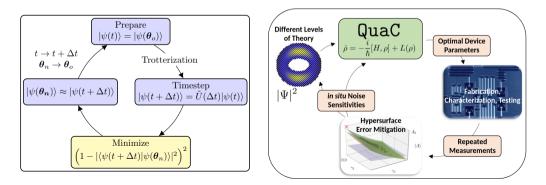
- Much more memory intensive than wavefunction
- Need high-performance computing (QuaC)
- Careful understanding of the important physics for the given architecture is necessary
 - What are the Hamiltonian parameters? What pulse represents what gate? What noise terms are dominant?
 - > Other levels of theory (e.g., electronic structure) or experimental data often necessary


 But, we can gain substantial understanding and better performance with high-fidelity simulations

QuaC Features

Simulate arbitrary (and possibly time-dependent) Hamiltonians and Lindbladians

- *n* level systems, not just qubits
- microwave pulses, etc
- Distributed memory parallelism
- 'Easy to use' interface
- Read circuits generated from cirq, qiskit, Forest (Rigetti), ProjectQ


Iterative Design

・ロト・西ト・モート 一日・ 今日・

Conclusion

- Practical applications of quantum computers, especially within chemistry, are within reach
- New algorithms, less expensive error mitigation, and better hardware are necessary to achieve these applications

Funding from Maria Goeppert Mayer Fellowship. otten@anl.gov