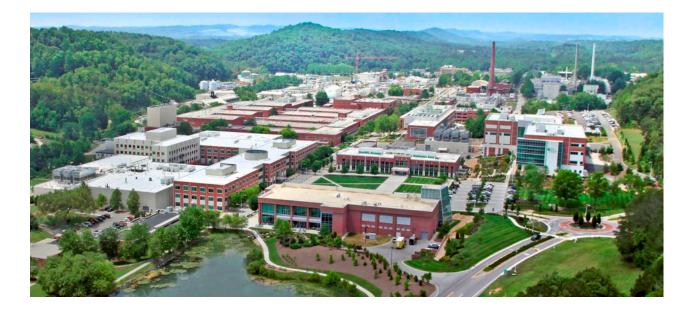


Introduction to ORNL group

Michael Febbraro Staff, Physics Division Marcel Demarteau ORNL Physics Division Director


ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Oak Ridge National Laboratory

ORNL Physics Division – Q-PIX**

- Marcel Demarteau
- Michael Febbraro
 - Photon detection R&D
- **Not currently supported on Q-PIX

HEP neutrino experiments at ORNL

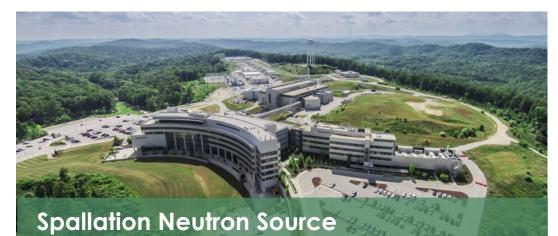
- COHERENT
 - Coherent neutrino-nucleus scattering
- PROSPECT
 - Precision reactor neutrino experiment

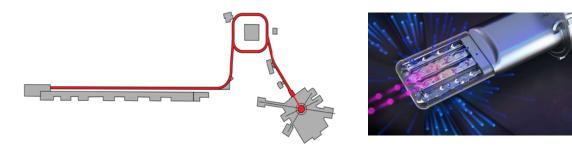
Physics Division - Capabilities

- Two world-class neutrino sources
 - SNS & HFIR
- Class 10000 reduced-background cleanroom
 - Located within a shielded vault (2 meter concrete overburden)
- Renovated scintillator laboratory
 - 1000 sqft dedicated to synthesis, fabrication, and characterization of scintillators, wavelength shifters, and detectors
 - VUV monochromator
- Cryogenic test stands LAr / Xenon-doping
- Multicharged Ion Research Facility
 - High intensity ion source which supports detector R&D
- High performance computing

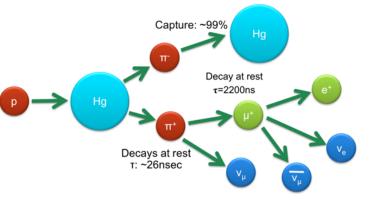
Neutrino sources at ORNL

- Superconducting H⁻ LINAC: 1 GeV @ 1.4MW @ 60 Hz
- Storage Ring: 1200 pulses, 1us Period, 350ns FWHM
- Liquid Mercury Target: circulates 20 tons with He gas injection to mitigate cavitation
- Operation ~5000 hours per year: 25 Terajoules/year

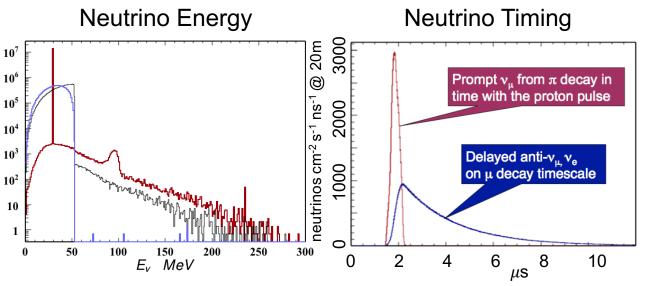

- 85 MW steady-state reactor
- Compacted core design
- 2.6 x 10¹⁵ n/cm2/s
- Operation: 3900 hours per year



Spallation Neutron Source at ORNL

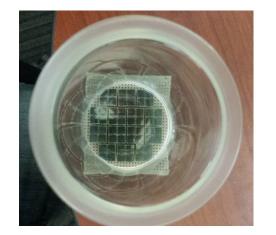


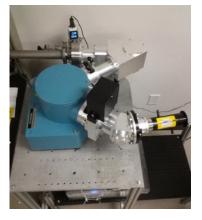
- Superconducting H⁻ LINAC: 1 GeV @ 1.4MW @ 60 Hz[#]
- Storage Ring: 1200 pulses, 1us Period, 350ns FWHM
- Liquid Mercury Target: circulates 20 tons with He gas injection to mitigate cavitation
- Operation ~5000 hours per year: 25 Terajoules/year


CAK RIDGE

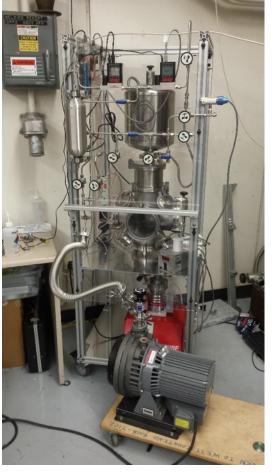
Credit: Slide from Jason Newby

Neutrinos via Pion Decay-at-Rest


 $2.81 \times 10^{14} \nu$ /cm²/flavor/SNSYear @ 20m


- SNS timing preserves DAR flavor structure
- Mono-energetic u_{μ} separated from $u_{e},
 u_{\mu}$

Cryogenic materials research

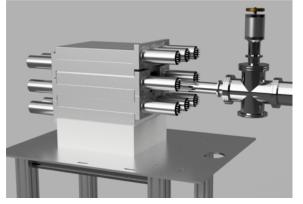

- Cryogenics material testing apparatus
 - PT-90 pulsed tube cryocooler
 - Gas purification and handling system
 - Insulting vacuum chamber and modular interior LAr vessel
 - Temperature control provided by liquid nitrogen dewar and resistive heating system
 - Optical readout with SiPMs and/or PMT
- Vacuum ultraviolet (VUV) spectrometer
 - Determination of absorption and emission spectra of materials at LAr emission wavelength (128 nm)
- Work with glass vessels
 - Using ORNL glass blowers

View of the 76 mm diameter SiPM array on the LAr vessel

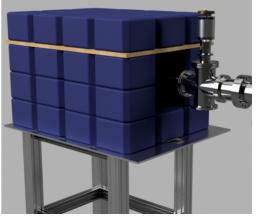
McPherson VUV spectrophotometer

Cryogenic materials testing apparatus

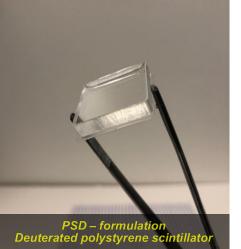
Multicharged ion research facility


- Two ECR ion sources
 - 250 kV HV platform
 - Wide range of ions from H to W
 - Complex molecular ion beams
 - Beam currents up to \sim mA (100s μ A typical)

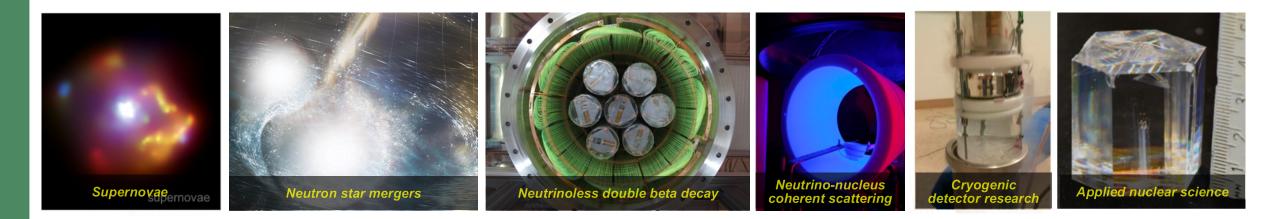
<image>


- Negative, positive, and neutral particle beams
- Multiple experimental end stations
 - General purpose
 - Surface interactions
 - Ion implantation
 - Merged beams

CAK RIDGE


Scintillator Laboratory at ORNL

- Physics division's chemistry support laboratory
 - 1000 sqft dedicated laboratory space for R&D of scintillators, detectors, and accelerator targets
 - Evaporator, electroplating, injection molding
 - Experience with isotopically enriched scintillators and detectors
 - Organic synthesis, cleanroom capabilities, cryogenics test stand
 - Material characterization GCMS, VUV-NIR spectroscopy, high intensity ion source



Overview of scintillator R&D at ORNL

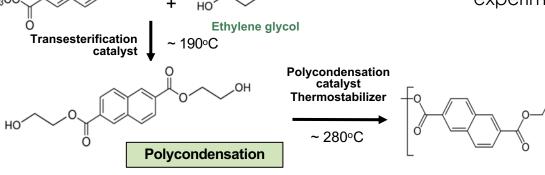
- Broad science focus on HEP, NP, and applied nuclear science missions throughout DOE
 - Neutrino physics (COHERENT)
 - Neutrinoless double beta decay (LEGEND)
 - Physics of stellar burning and explosive nucleosynthesis (FRIB)
 - Applied nuclear science

Scintillator & WLS R&D

- Liquid, plastic, single-crystal scintillators
- Organic synthesis
- Fabrication techniques
 - Polymerization -
 - Temperature controlled baths
 - UV Cure
 - Centrifuge
 - Evaporation
 - Injection molding
- Organic purification

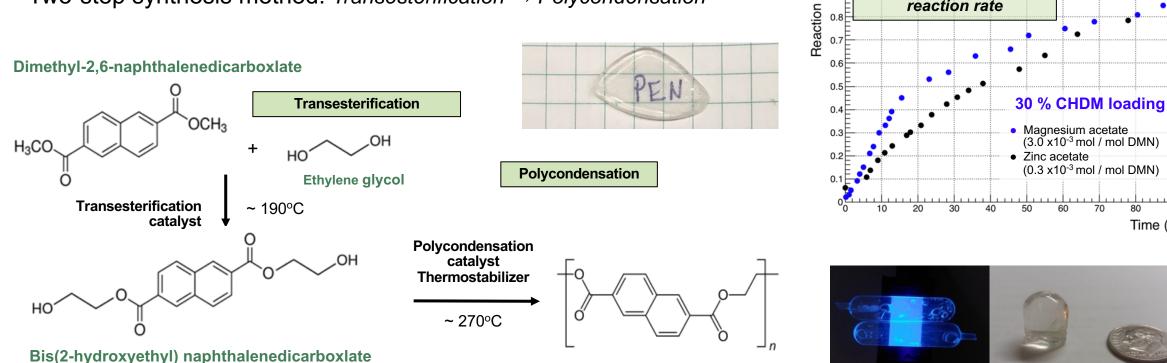
Structural low-background scintillators

- Designed to replace inactive structural ۲ components with scintillating materials
 - Improve active veto capability
 - VUV-VIS wavelength shifting in LAr
 - Poly(ethylene naphthalate) (PEN) is a potential candidate material
 - Scintillates around 440 nm
 - Yield strength higher than copper at cryogenic temperatures
- ORNL efforts focused on synthesis of lowulletbackground PEN derivatives with enhanced properties Dimethyl-2,6-naphthalenedicarboxlate
 - Reduced radio impurities
 - Optical transparency
 - Improved processability
 - Improved scintillation yield


Experimental setup for polyester synthesis at ORNI

Radio-clean production run at TU Dortmund

PEN tile under evaluation for possible use in a Transesterification ton-scale $0\nu 2\beta$ experiment



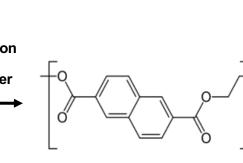
PEN synthesis at ORNL

CAK RIDGE National Laboratory

12

- Can we make low-background scintillator grade PEN? ۲
- Synthesis efforts focused on low-background PEN derivatives ullet
 - Higher light yield, reduction in radio impurities, improved optical properties
- Two-step synthesis method: *Transesterification* \rightarrow *Polycondensation* ٠

Time (min)

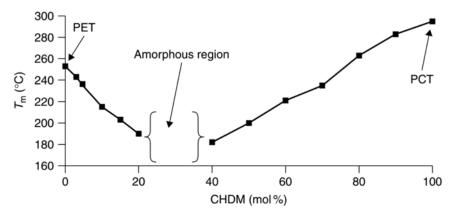

Transesterification

reaction rate

yield

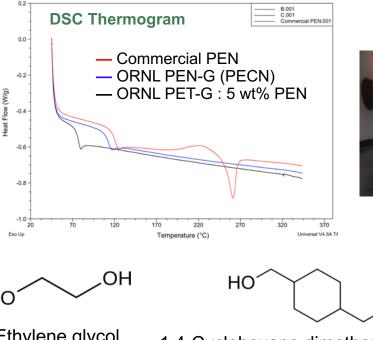
0.9

0.8


Transparency of PEN

- Crystallization leads to scattering of light on boundaries
 - Polymer becomes opaque
 - Can be controlled using rapid cooling but not always possible for complex or large geometries
- Introduction of a copolymer can reduce crystallization
 - Demonstrated with PET

CAK RIDGE National Laboratory

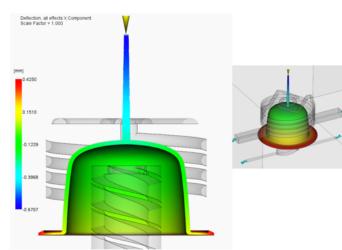

13

- PETG or "glycol modified PET"
- Common copolymer is cyclohexanedimethanol or CHDM

Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. Edited by J. Scheirs and T. E. Long © 2003 John Wiley & Sons, Ltd ISBN: 0-471-49856-4

ORNL synthesized PEN -CHDM loading (mol %)

Ethylene glycol


1,4-Cyclohexane dimethanol (CHDM)

R&D on injection molding and bonding

- Low-background production run
- Progress on producing arbitrary shapes
 - Plates / disks
 - Fibers
 - Capsules / containers
- Evaluation of radio-clean joining techniques
 - Ultrasonic welding
 - Low-background glues and adhesives

Questions?

Neutron detectors

- Experience with neutron detectors
- Oak Ridge Deuterated Spectroscopic Array (ODeSA)
- Scintillator Array of Bars for Reaction Experiments (SABRE)
- In-house scintillators

16