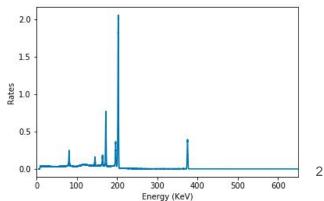
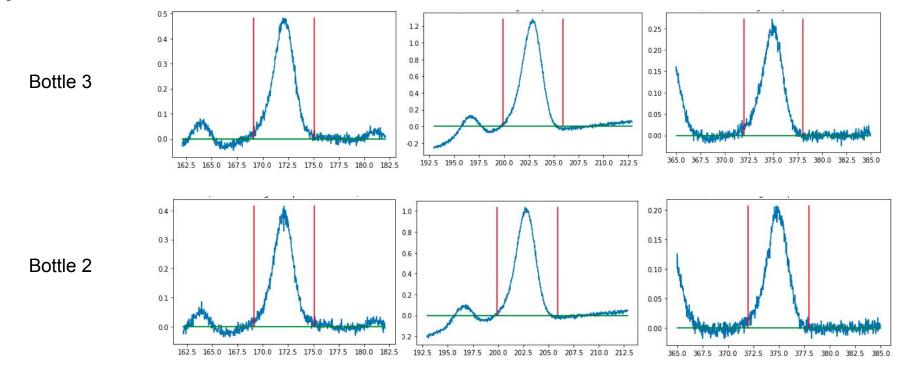

Jan 2020 Xe127 Activation Analysis Summary


Jacob McLaughlin

Raw Energy Spectra


- Energy calibration on dirty bottles looks good based off 511 line and xenon lines
- Clean bottle has a much smaller compton pedestal
 - In dirty bottles can do a linear background subtraction around peaks

Bottle 6

Background Subtracted Peaks

- Linear background subtraction for each peak. Line built from points 3-8 kev away from nominal peak
 - Corrected peak counted over 3 kev of nominal peak
- 172 and 375 peaks look like best subtraction

Rates and Errors

- Only statistical errors on rate were included
 - Each bin's error is taken as sqrt(Rate)
- When background subtraction was done errors on slope and intercept were included

$$\sigma_m = \sqrt{\sum_i ((\frac{E_i - \bar{E}}{\sum_j (E_j - \bar{E})^2})^2 \sqrt{\sigma_{y_i}^2 + \sigma_{y_{bar}}})^2}$$

$$\sigma_{Background} = \sqrt{(E^2 \sigma_m^2 + \sigma_b^2)}$$

$$\sigma_b = \sqrt{\sigma_{\bar{y}}^2 + \sigma_m^2 \bar{E}^2}$$

Sitting on top	172.1 kev	202.9 kev	375.0 kev
Bottle 3	41.9 土 14.6 Hz	103.7 土 17.1 Hz	22.5 土 10.1 Hz
Bottle 2	33.6 土 14.0 Hz	82.0 土 15.7 Hz	17.5 土 9.3 Hz
Bottle 6	57.2 土 7.6 Hz	143.4 土 12.0 Hz	28.4 土 5.3 Hz

MCNP Efficiencies/Geometry Test

- Can check geometry by looking at the falloff between sitting on top and 4cm up
 - Observed Falloff: 2.76
 - Expected Falloff: 2.99 (Based off r = 3.1 cm, Ceiling = -1.1 cm)
- Statistical errors from efficiency calculation are neglected
- Some gamma fluxes seem initially off
 - Can look at activities with and without correction

Line	Expected Intensity/Decay	Simulated Intensity/Decay
172 kev	0.257	0.286
202 kev	0.687	0.747
375 kev	0.173	0.172

Activities (sitting on top only)

	172 kev	202 kev	375 kev
Bottle 3	10.8 土 3.9 KBq	10.6 土 1.8 KBq	12.5 土 5.6 KBq
Bottle 2	8.7 土 3.6 KBq	8.4 土 1.6 KBq	9.7 土 5.2 KBq
Bottle 6	14.8 ± 2.0 KBq	14.7 土 1.2 KBq	15.8 ± 3.0 KBq

Corrected gamma fluxes

	172 kev	202 kev	375 kev
Bottle 3	12.1 土 4.3	11.5 土 1.9	12.5 土 5.6
Bottle 2	9.7 ± 4.2	9.1 土 1.7	9.7 ± 5.2
Bottle 6	16.5 土 2.2	16.0 土 1.3	15.8 土 3.0

Activities (combined 4 cm up and sitting on top)

	172 kev	202 kev	375 kev
Bottle 3	10.9 土 3.9 KBq	10.9 土 1.8 KBq	13.3 土 5.7 KBq
Bottle 2	8.6 土 3.6 KBq	8.5 土1.6 KBq	10.2 土 5.2 KBq
Bottle 6	14.3 ± 1.9 KBq	14.5 土 1.2 KBq	16.4 ± 3.1 KBq

Corrected gamma fluxes

	172 kev	202 kev	375 kev
Bottle 3	12.1 ± 4.3 KBq	11.8 土 1.9 KBq	13.3 土 5.7 KBq
Bottle 2	9.7 土 4.0 KBq	9.3 土 1.8 KBq	10.2 土 5.2 KBq
Bottle 6	16.0 土 2.1 KBq	15.8 土 1.3 KBq	16.3 土 3.0 KBq

Conclusions

- Activities in corrected tables seem nicely clustered
 - Errors seem overestimated
 - Could do an averaging to get a single measure
- Some changes in the MCNP geometry are needed to fully model the solid angle falloff
 - Have enough data to do this, just need enough time to actually address it
- Some more analysis of the Xe127 source in MCNP is in order
- Much lower relative errors come from the clean bottle so it's worth keeping around