

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# **Building and Testing MARS PIP2 Model**

Igor Tropin, Target Systems Department Topical Meeting

# Outline

- Goal and method
- Tools
- Implementation of the MARS application
- Preliminary results
- Conclusion



Goal : Produce data (multiple calculations) for shielding assessment for PIP-II Linac and Booster Transfer Line (BTL)

Method : MC simulation by means of the MARS15 code system.

Task : Build and test the MARS application:

- 1. Gather and adapt input data for application from civil and mechanical engineers, accelerator physicists.
- 2. Define source, geometry, and estimators
- 3. Debug and test application code.

Tools : MARS15(2020), BOOST v.1.72.0, MAD-X v5.05.2, ROOT v.6.18.04



# **Geometry Model: General View**



MAD-X survey table is used for positioning geometry elements in the MARS model. BTL MAD-8 optics was provided by Meiqin Xiao, Linac optics – Arun Saini.

🛠 Fermilab

**TSD** Topical Meeting

Building and Testing MARS PIPII Model

02/20/2020

I.Tropin

#### Fragments of the PIP-II Linac -- BTL Beam Line in MARS Model



**Building and Testing MARS PIPII Model** 

**TSD** Topical Meeting

# **Cavities** in HB650 Section



CAD files for elliptical cavities as well as for SSR1,SSR2 are provided by I. Gonin



# **RF Field in Cavities**





#### **Quads in HB650 section**





# **BTL Quadrupole Magnet**





# **BTL Dipole Magnet**



10 02/20/2020 I.Tropin

**Building and Testing MARS PIPII Model** 

TSD Topical Meeting

# Linac and Transition to Booster Transfer Line (BTL)





11 02/20/2020 I.Tropin

### **Linac Tunnel**





#### MARS 1σ Trajectories (Elevation View) From MEBT to End of BTL



#### Prompt Dose (mSv/hr), Elevation View 1 W/m Beam Loss (Uniform in Azimuth)





#### Prompt dose (mSv/hr) in PIP-II Linac 1 W/m beam loss (uniform in azimuth)





# W/o cryomodules 1.108M (beam loss along 500+ m)

# With cryomodules 1.408M (beam loss along 236m)

#### y(m) y(m) Elevation view Elevation view With cryomodules 8.0 8.0 With constant electric field in cavities With RF field in LB and HB cavities 6.0 6.0 4.0 4.0 2.0 2.0 0.0 0.0 -2.0 -2.0 z(m)z(m)50.0 250.0 0.0 150.0 200.0 0.0 50.0 150.0 200.0 250.0 100.0 100.0 5.9e+05 1.1e+06 10<sup>-3</sup> 10<sup>-7</sup> 10<sup>-1</sup> 10<sup>-3</sup> 10<sup>-5</sup> 10<sup>-7</sup> $10^{3}$ 10<sup>-5</sup> $10^{3}$ $10^{5}$ $10^{-1}$ 10<sup>-9</sup> $10^{5}$ $10^{1}$ $10^{1}$ $10^{-9}$ $10^{\circ}$ 10 Aspect Ratio z/y = 24.0870; x0 = 0.0000; -30.0000 < x < 30.0000 (cm) Aspect Ratio z/y = 24.0870; x0 = 0.0000; -30.0000 < x < 30.0000 (cm)

02/20/2020

**‡** Fermilab



17 Presenter | Presentation Title

02/20/2020

**‡** Fermilab

# **Prompt Dose Above the Linac Tunnel**

- The prompt dose in soil above the tunnel is mostly due to (low energy) neutrons.
- The prompt dose attenuation in the soil above the tunnel ceiling follows the wellknown rule of thumb: a soil layer as thick as 3' provides approximately a 10-fold dose attenuation.
- The rule of thumb has been confirmed in many cases, most recently in calculations performed for ESS linac.
- The <u>estimated</u> prompt dose atop the 12' berm (in the hottest spot, that is above HB650 section) is approximately 0.01 mSv/hr = 1 mrem/hr <u>for the case of 1 W/m</u> <u>beam loss uniform in azimuth</u>.
- The hottest spot is expected to be qualified as a "**Controlled area of minimal occupancy**" with occupancy duration of less than 1 hr and corresponding signs.



# Conclusion

To be done:

- Filling out cryomodules with internal parts (in progress)
- Incorporating the RF fields in SSR1,SSR2,HWR cavities, and magnetic field in solenoids.
- Implementing geometry of the first BTL dipole and solenoids in linac - magnets are not designed yet, beam dumps.
- Comparison between fields and trajectories in linac with those obtained using the TraceWin code (in progress).
- For discussion: publishing MARS applications in Git repository with the support subscription.

