High energy protons

Stefania Gori UC Santa Cruz

Booster replacement science opportunities meeting

Fermilab, May 19, 2020

The SeaQuest experiment

Fermilab Accelerator Complex

The SeaQuest experiment

The SeaQuest experiment

SeaQuest in a nutshell

1. Compact geometry

Sensitivity to (slightly) displaced dark particles with **d > 5m**

FMAG sweeps away soft SM radiation $(\Delta p_T \sim 2.9~{
m GeV})$

2. KMAG separating even very forward muons $(\Delta p_T \sim 0.4~{
m GeV})$

Identification of very light dark particles/squeezed spectra

SeaQuest in a nutshell

S.Gori 3

Key feature of high energy p-beams: huge production of dark particles

Key feature of high energy p-beams: huge production of dark particles

Generically larger rates than at electron fixed target experiments

$$\begin{cases} N_{A'}(e \text{ Brem.}) \sim \left(\frac{\epsilon}{10^{-6}}\right)^2 \left(\frac{m_{A'}}{\text{GeV}}\right)^{-2} \left(\frac{\text{EOT}}{10^{18}}\right) \\ N_{A'}(p \text{ Brem.}) \sim 10^4 \times \left(\frac{\epsilon}{10^{-6}}\right)^2 \left(\frac{\text{POT}}{10^{18}}\right) \end{cases}$$

S.Gori

Visible decays of dark particles

Dark sector particles can generically decay to SM particles, producing <u>visible signatures</u> in our detectors

"portal interactions" $\epsilon B^{\mu
u} A'_{\mu
u} \ \kappa |H|^2 |S|^2 \ yHLN \ rac{1}{f_s} F_{\mu
u} ilde{F}_{\mu
u} a$

Visible decays of dark particles

Dark sector particles can generically decay to SM particles, producing <u>visible signatures</u> in our detectors

if the dark particle is the lightest particle of the dark sector:

"portal interactions" $\epsilon B^{\mu\nu} A'_{\mu\nu} \ \kappa |H|^2 |S|^2 \ yHLN \ rac{1}{f_s} F_{\mu\nu} ilde{F}_{\mu\nu} a$

$$rac{1}{f_s}F_{\mu
u} ilde{F}_{\mu
u}a$$
 $ightharpoonup$ $a o$ үү

S.Gori

DarkQuest upgrade

The SeaQuest experiment can be upgraded with the goal of capturing a large set of visible signatures (beyond 2 muons)

DarkQuest upgrade

The SeaQuest experiment can be upgraded with the goal of capturing a large set of visible signatures (beyond 2 muons)

We are preparing a Snowmass'21 white paper (N.Tran et al.)

Please contact us if you are interested in joining! (sgori@ucsc.edu, ntran@fnal.gov)
S.Gori

High geometric acceptance...

...thanks to the relatively compact geometry

Berlin, SG, Schuster, Toro, 1804.00661

Reach on dark photon models

Minimal model: pp → A' → e+e-

Berlin, SG, Schuster, Toro, 1804.00661

Reach on dark photon models

Example of a non-minimal model:

$$pp \rightarrow A' \rightarrow X_1 X_2 \rightarrow e^+e^- X_1 X_1$$

As realized e.g. in models of:

- Inelastic Dark Matter
- Strongly interacting Dark Matter

Reach on dark photon models

Example of a non-minimal model:

$$pp \rightarrow A' \rightarrow X_1 X_2 \rightarrow e^+e^- X_1 X_1$$

As realized e.g. in models of:

Inelastic Dark Matter

Strongly interacting Dark Matter

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Beyond dark photon...

Many additional dark particles can be tested up to O(GeV) masses.

Beyond dark photon...

Many additional dark particles can be tested up to O(GeV) masses. A few examples:

Berlin, SG, Schuster, Toro, 1804.00661

Batell, Evans, SG, Rai, to appear

Conclusions & Outlook

Interesting classes of Dark Matter models at the **GeV scale** are still hidden to our experiments

Fermilab can cover a crucial role in the search for GeV-scale dark sectors utilizing the high energy, 120 GeV, proton beam.

A "SeaQuest-like" spectrometer experiment can test a large set of visible signatures.

<u>DarkQuest:</u> a very interesting opportunity to probe long-lived visible dark particles.

High acceptance due to the compact geometry

Comparison with other proposed exp.

FASER: Feng et al., 1708.09389

NA62:
Lanfranchi
@ CERN-EPFL-Korean
theory institute

SHiP: Alekhin et al., 1504.04855