GLoBES

Patrick Huber

IPNAS, Virginia Tech

International Neutrino Summer School Fermilab, July 6-17, 2009

What?

General Long Baseline Experiment Simulator

GLoBES is a software package designed for

- Simulation
- Analysis
- Comparison

of neutrino oscillation experiments

Where?

It is developed and maintained by

- PH
- Joachim Kopp
- Manfred Lindner
- Walter Winter

URL - http://www.mpi-hd.mpg.de/lin/globes/
email - globes@mpi-hd.mpg.de

Wide band beam

Why? APS study

Fermilab's Proton driver report

White paper on reactor neutrinos

CERN strategy group

Joint BNL-FNAL study group

Reliability

- Re-use of code, the more a code has been used in real world applications the less likely are severe bugs.
- Extensive testing
- Good documentation
- Intuitive API with error checking

Reproducibility

The information given in a publication or proposal is not sufficient to reproduce the sensitivity estimates.

- General data storage and exchange format for the inputs \Leftrightarrow flexibility?
- All implicit assumptions and approximations have to be documented, that includes the actual algorithms \Leftrightarrow accuracy of documentation?
- Version control and archiving

Documentation

Without good documentation, the best software is useless or will be after very short time (=memory decay constant of typical physicist). This is a general problem with legacy code!

Document what you do – do what you document and make sure that the average user understands what is going on. Also documentation needs testing and debugging.

GLoBES history

- development started 2004 PH, M. Lindner, W. Winter
- major effort went into documentation
- first release August 2004 version 2.0.0
- major bug fix release March 2005 version 2.0.11
- J. Kopp joined in July 2005
- January 2007 version 3.0, addition of major features
- 93 publications citing the GLoBES paper, creating a total of 1514 citations

Design considerations

- GPL
- C-library very portable, easy to interface, numerically efficient
- Unix style separation of functionality freedom to design analysis and to use any graphics tools
- Experiments are defined using AEDL relatively complicated parser, transparent experiment definition
- Pull approach for systematics flexible and intuitive
- Local minimization instead of grids much faster

Features

- Accurate treatment of systematical errors
- Arbitrary matter profile & uncertainties
- Arbitrary energy resolution function
- Single and multiple experiment simulation
- Simple χ^2 calculation
- Inclusion of external input
- Projection of χ^2 (minimization)
- User-defined systematics, oscillation probability engine, priors
- Full support for lists in AEDL
- Interpolating functions in AEDL

P. Huber – p. 16

Summary

GLobes

- is the only open source software of its kind
- has withstood the test of time (netx month, 5 years!)
- is at the core of most strategy documents
- completely in C
- flexibility to deal with complex many detector setups and non-standard physics

Installation

If you have Linux

- Install GSL if you don't have it already ftp://ftp.gnu.org/gnu/gsl/
- Go to
 http://www.mpi-hd.mpg.de/lin/globes/downloads
 download GLoBES
- ./configure make sudo make install

Installation

If you have a Mac

- Install GSL if you don't have it already ftp://ftp.gnu.org/gnu/gsl/
- Download http://www.phys.vt.edu/ pahuber/globes-3.1.3.tar.gz
- unpack it and change into the directory created by this

```
./configure --disable-rpath --enable-no-binary=yes
make
make install
```