
GLoBES Tutorial: Simulating accelerator neutrino experiments

GLoBES workshop in Heidelberg, Germany, January 24-26, 2007

Joachim Kopp 25.01.07

This tutorial will introduce some of the basic concepts required to simulate accelerator neutrino
experiments with GLoBES (General Long Baseline Experiment Simulator). We will start from a
simple and incomplete implementation of the T2K superbeam experiment, which we will gradually
improve. We will first consider the precision measurement of the leading atmospheric oscillation
parameters θ23 and ∆m2

31, and later discuss the possible detection of non-zero θ13 and δCP .

Part 1: Precision measurement of θ23 and ∆m2
31

Problem 1: Warm-up

Consider first the program in the directory globes-tutorials/th23dm31/, which com-
putes χ2 as a function of the fit values of θ23 and ∆m2

31, but is still lacking several important
features. Compile the program by typing make and run it with the command ./th23dm31.
Each line of the output file th23dm31.dat will contain three numbers: the fit value for
θ23 in degrees, the fit value for ∆m2

31 in eV2, and the corresponding χ2. Use the script
th23dm31.gnuplot to view the results as an EPS plot, which should look like Fig. 1.
Now, familiarize yourself with the C code (th23dm31.c) and the AEDL experiment defini-
tion (T2K-tutorial.glb). In doing so, you can already watch out for the aforementioned
shortcomings of the code. There are essentially three of them, which we will one by one
discuss below in problems 2, 4, and 5.

Problem 2: Spectral analysis vs. total rates

Let us examine Fig. 1 more closely: There is a very strong correlation between θ23 and
∆m2

31: A mixing angle far from its assumed “true” value of 45◦ is still compatible with the
data, if, at the same time, a larger ∆m2

31 is assumed. The reason for this is, that increasing
∆m2

31 means that larger parts of the neutrino energy spectrum are affected by oscillations,
which compensates the smaller oscillation amplitude. This woul be a severe limitation
to the sensitivity of the experiments, but luckily, it can be remedied by an improved
data analysis: Instead of performing a total rates analysis, we should incorporate spectral
information. Then, we can determine the energy at which the first oscillation maximum
occurs, and thus pin down ∆m2

31.
Accordingly, we have to increase the number of analysis bins ($bins) from 1 to 20 and select
a different χ2 function in T2K-tutorial.glb. Change the command @sys_on_function =

"chiTotalRatesTilt" to @sys_on_function = "chiSpectrumTilt" in the first two rules
(#NU_E_Appearance_QE and #NU_MU_Disappearance_QE). Leave the charged current νe

appearance rule unchanged to reflect the fact that the Super-Kamiokande detector cannot
reconstruct the energy of CC νe events very well, so that a spectral analysis is not possible
for them. The plot you will obtain after re-running the program, Fig. 2, looks much more
like what we expect from T2K. The correlation between θ23 and ∆m2

31 is still visible, but
much less pronounced than before.

1

 35 40 45 50 55
 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0.0028

 0.0029

 0.003

Confidence regions in the θ23-∆m31
2 plane

θ23 [degrees]

∆
m

31 2 [eV
2]

 11.8
 6.18
 2.3

Figure 1: Output of th23dm31: Confidence regions in the θ23–∆m2
31 plane for a (too) simple

implementation of the T2K experiment.

 35 40 45 50 55
 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0.0028

 0.0029

 0.003

Confidence regions in the θ23-∆m31
2 plane

θ23 [degrees]

∆
m

31 2 [eV
2]

 11.8
 6.18
 2.3

Figure 2: Solution of problem 2. Confidence regions in the θ23–∆m2
31 plane with the

inclusion of spectral information.

2

 35 40 45 50 55
 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0.0028

 0.0029

 0.003

Confidence regions in the θ23-∆m31
2 plane

θ23 [degrees]

∆
m

31 2 [eV
2]

 11.8
 6.18
 2.3

 35 40 45 50 55
 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0.0028

 0.0029

 0.003

Confidence regions in the θ23-∆m31
2 plane

θ23 [degrees]

∆
m

31 2 [eV
2]

 11.8
 6.18
 2.3

(a) (b)

Figure 3: Solution of problem 3: Confidence regions in the θ23–∆m2
31 plane for non-maximal

θ23 and (a) zero θ13, (b) large θ13.

Problem 3: The octant degeneracy

Up to now, we have considered θ23 to be maximal. However, deviations Of about ±5◦ from
this best fit value are still compatible with current data. Therefore, let us now consider the
effect of θ23 = 40.0◦. Modify th23dm31.c accordingly and compute the resulting confidence
regions, which should resemble Fig. 3a. There are now two distinct regions in the parameter
space, which are both compatible with the data at less than 1σ: The correct one around
θ23 = 40.0◦, and the degenerate one at θ23 = 90◦− 40.0◦ (the so-called octant degeneracy).
This looks correct, but let us now increase θ13 to a value close to the current upper bound,
say, sin2 2θ13 = 0.1. You will find that the degenerate solution is now excluded at almost
2σ (Fig. 3b). Try to understand this feature from the (approximate) analytical expressions
for the neutrino oscillation probabilities:

Pµµ = 1 − sin2 2θ23 sin2 ∆ + α c2
12 sin2 2θ23 ∆ sin 2∆

− α2 ∆2
[
sin2 2θ12 c2

23 + c2
12 sin2 2θ23

(
cos 2∆ − s2

12

)]
+ 4 s2

13 s2
23 cos 2θ23 sin2 ∆

− 2 α s13 sin 2θ12 s2
23 sin 2θ23 cos δCP ∆ sin 2∆ ,

P vac
µe = α2 sin2 2θ12 c2

23 ∆2 + 4 s2
13 s2

23 sin2 ∆ + 2 α s13 sin 2θ12 sin 2θ23 cos(∆ + δCP) ∆ sin ∆ ,

where α = ∆m2
21/∆m2

31, ∆ = ∆m2
31L/4E, sij = sin θij, and cij = cos θij.

Problem 4: Incorporation of correlations with θ13 and δCP

Fig. 3b should make us suspicious, since we do not expect T2K to have the capability to
resolve the octant degeneracy. Indeed, we have so far assumed full knowledge about all
oscillation parameters except θ23 and δCP , i.e. we have kept them fixed at their“true”values
in our fits. Unless there were some theoretical argument (e.g. a flavor symmetry) pinning
down these parameters, we should allow them to vary within their presently allowed ranges

3

in the fit. This will yield smaller χ2 values, i.e. the sensitivity will decrease.
The marginalization over multi-dimensional subspaces of the oscillation parameter space
is one of the most powerful features of GLoBES. To enable it in our code, we use the API
functions glbAllocProjection, glbDefineProjection, glbSetDensityProjectionFlag,
and glbSetProjection to specify that θ12, θ13, ∆m2

21, and δCP should be marginalized over,
while θ23, ∆m2

31, and the matter density should be kept at their initial values. A short
documentation of the required API functions is given in the appendix.
Furthermore, we have to specify the parameters of the prior terms

χ2
prior =

(x − x0)
2

σ2
x

,

which can be added to χ2 for all oscillation parameters x to include external information on
these parameters. Set all x0 to the true_values with the function glbSetCentralValues,
and use glbAllocParams, glbDefineParams, glbSetDensityParams, and glbSetInput-

Errors to set

σθ12 = 0.1 · θ12,true

σ∆m2
21

= 0.1 · ∆m2
21,true.

For all other parameters (including the matter density), we choose to omit the prior terms
by setting the respective σx to 0.
Finally, we have to replace the call to glbChiSys by one to glbChiNP. Due to the multi-
dimensional minimization in the oscillation parameter space, the calculation will now take
a bit longer.1

Problem 5: The sgn(∆m2
31) degeneracy

Besides the octant degeneracy, there is another degeneracy in the three-flavor neutrino
oscillation probabilities, which we have not considered ao far: The ambiguity in the sign
of ∆m2

31. Indeed, if we considered the half-plane of negative ∆m2
31, we would find a mirror

image of Fig. 4.
For the moment, however, we are only interested in the positions of the two solutions with
∆m2

31 < 0. To find them, use the function glbChiAll, and choose the starting values such
that the minimizer will converge to the appropriate local minima of χ2. Create a new
glb_params data structure and pass it to glbChiAll as the second argument to retrieve
the position of the minimum.
Why is |∆m2

31| slightly smaller at the degenerate solutions than at the true one?

1Note that our example programs already use the faster, alternative minimization method
GLB MIN POWELL instead of the default GLB MIN NESTED POWELL. We emphasize, however, that
this is still an experimental feature in GLoBES 3.0.

4

 35 40 45 50 55
 0.0023

 0.0024

 0.0025

 0.0026

 0.0027

 0.0028

 0.0029

 0.003

Confidence regions in the θ23-∆m31
2 plane

θ23 [degrees]

∆
m

31 2 [eV
2]

 11.8
 6.18
 2.3

Figure 4: Solution of problem 4: Confidence regions in the θ23–∆m2
31 plane for non-maximal

θ23 and large θ13, including parameter correlations.

Part 2: Generic three-flavor effects: θ13 and δCP

Problem 6: Confidence regions in the θ13–δCP plane

One of the main aims of superbeam experiments is the detection of generic three-flavor
effects, in particular of non-zero θ13 or δCP . To examine the capability of T2K to mea-
sure these parameters, we provide the program th13delta and the accompanying script
th13delta.gnuplot, which produces a confidence plot in the θ13–δCP plane. For simplic-
ity, the program only considers the normal mass hierarchy in the fit, i.e. we assume that
the sgn(∆m2

31) degeneracy has been resolved independently, e.g. with supernova neutrinos.
Furthermore, we have set the “true” θ23 back to 45◦, so that we can also neglect the octant
degeneracy.
Fig. 5 shows the results of the simulation. As we can see from the plot, there is a strong
correlation between θ13 and δCP , which makes it impossible to efficiently constrain the CP
phase. In the remainder of this tutorial, we will consider two strategies for breaking this
correlation.

Problem 7: Improving the sensitivity by anti-neutrino running

One idea for improving the sensitivity of superbeam experiments is to operate them in
the anti-neutrino mode for several years after the neutrino running. Although the cross
sections, and thus the event numbers, in the anti-neutrino mode are smaller by a factor

5

 0 2 4 6 8 10 12 14
 0

 50

 100

 150

 200

 250

 300

 350

Confidence regions in the θ13-δCP plane

θ13 [degrees]

δ
C

P [degrees]

 11.8
 4.6

Figure 5: Output of th13delta: Confidence regions in the θ13–δCP plane for a fit with the
normal mass hierarchy. The “true” parameter values are θ23 = 45◦, ∆m2

31 = 2.6 · 10−3 eV2,
sin2 2θ13 = 0.1, and δCP = 90◦.

of three than those for neutrinos, one can benefit from the fact that the dependence of
the anti-neutrino oscillation probabilities on δCP is different. To see the effect of this,
we need to incorporate a new flux definition, several new channels, and the appropriate
rules in th AEDL file. The parameters of these new AEDL environments are mostly the
same as for the existing ones, so you can start by simply duplicating these. Give them
new names, change the flux file to JHFminus.dat, and reverse the CP signs for the new
channels. Finnaly, increase the running time for the anti-neutrino mode to 6 years.
As you can see from Fig. 6, the anti-neutrino running will exclude almost half of the δCP

values at the 90% C.L., but at 3σ, the excluded region is much smaller.

Problem 8: Improving the sensitivity by incorporating reactor results

Another option for breaking some of the correlations in T2K is the combination with an
advanced reactor neutrino experiment. To study this, incorporate Reactor2.glb into your
simulation by adding an appropriate call to glbInitExperiment. Re-run the program to
obtain Fig. 7, which shows that an advanced reactor experiment can measure θ13 with a
great precision. Moreover, since the νe disappearance channel is independent of δCP , it
does not suffer from parameter correlations. Therefore, the parameter constraints that can
be set by a combination of T2K and reactor data, are competitive to those obtainable with
the much more expensive anti-neutrino running. Note, however, that this is only true as
long is θ13 is large. For smaller values, one cannot so easily benefit from reactor data.

6

 0 2 4 6 8 10 12 14
 0

 50

 100

 150

 200

 250

 300

 350

Confidence regions in the θ13-δCP plane

θ13 [degrees]

δ
C

P [degrees]

 11.8
 4.6

Figure 6: Solution of problem 7: Confidence regions in the θ13–δCP plane for 3 years of
neutrino running, followed by 3 years of anti-neutrino running, and assuming the normal
mass hierarchy.

 0 2 4 6 8 10 12 14
 0

 50

 100

 150

 200

 250

 300

 350

Confidence regions in the θ13-δCP plane

θ13 [degrees]

δ
C

P [degrees]

 11.8
 4.6

Figure 7: Solution of problem 8: Confidence regions in the θ13–δCP plane for 3 years of
T2K neutrino running, combined with Reactor2 data (exposure of 8000 GW kt yrs), and
assuming the normal mass hierarchy.

7

Appendix: Documentation of required API functions

glb_params glbAllocParams() allocates the memory space needed for a parameter vector
and returns a pointer to it.

glb_projection glbAllocProjection() allocates the memory space needed for a projec-
tion definition, and returns a pointer to it.

double glbChiAll(const glb_params in, glb_params out, int exp) returns the min-
imized χ2 over all parameters for the experiment exp. For the simulation of all initialized
experiments, use GLB_ALL for exp. The values in in are the guessed fit values for the
minimizer. The actually determined parameters at the minimum are returned in out. If
out is set to NULL, this information will not be returned.

double glbChiNP(const glb_params in, glb_params out, int exp) returns the pro-
jected χ2 onto the hyperplane specified by glbSetProjection for the experiment exp. For
the simulation of all initialized experiments, use GLB_ALL for exp. The values in in are
the guessed fit values for the minimizer (all free parameters) and the fit values on the hy-
perplane (all fixed parameters). The actually determined parameters at the minimum are
returned in out, where the fixed parameters are still at their input values. If out is set to
NULL, this information will not be returned.

glb_params glbDefineParams(glb_params in, double theta12, double theta13,

double theta23, double delta, double dms, double dma) assigns a set of oscillation
parameters to the vector in, which has to be allocated before. The return value is the pointer
to in if the assignment was successful, and NULL otherwise.

glb_projection glbDefineProjection(glb_projection in, int theta12, int

theta13,int theta23, int delta, int dm21, int dm31) defines a projection in the
oscillation parameter space. For each parameter, the function expects one of the flags
GLB_FREE or GLB_FIXED, indicating whether the respective parameter is to me marginalized
over or not. The return value is the pointer to in if the assignment was successful, and
NULL otherwise.

void glbFreeParams(glb_params stale) frees the memory needed for a parameter vector
stale.

void glbFreeProjection(glb_projection stale) frees the memory needed for the pro-
jection definition vector stale.

int glbInitExperiment(char *inf, glb_exp *in, int *counter) adds a single ex-
periment with the filename inf to the list of currently loaded experiments. The counter is a
pointer to the variable containing the number of experiments (normally &glb_num_of_exps),
and in points to the beginning of the experiment list (normally &glb_experiment_list[0]).
The function returns zero if it was successful.

8

int glbSetCentralValues(const glb_params in) sets the central values for the prior
terms to in.

glb_params glbSetDensityParams(glb_params in, double dens, int which) sets the
density parameter for experiment number which in the structure in to the value dens. If
the assignment was unsuccessful, the function returns NULL. If GLB_ALL is used for which,
the density parameters of all experiments will be set.

glb_projection glbSetDensityProjectionFlag(glb_projection in, int flag, int

which) specifies whether the matter density in experiment number which should be marginal-
ized over (flag = GLB_FREE) or not (flag = GLB_FIXED). The return value is the pointer
to in if the assignment was successful, and NULL otherwise.

int glbSetInputErrors(const glb_params in) sets the input errors for all of the fol-
lowing minimizer calls to in. An input error of 0 corresponds to not taking into account
the respective prior.

int glbSetProjection(const glb_projection in) sets the projection to in. The re-
turn value is 0 if successful, and −1 if unsuccessful.

9

