Fermilab, July ‘09

Models of Neutrino Masses and Mixings

2

Guido Altarelli
Universita' di Roma Tre/CERN

Hierarchy for masses and mixings via horizontal $\mathrm{U}(1)_{\mathrm{FN}}$ charges.
Froggatt, Nielsen '79

Principle: A generic mass term

\[

\]

$U(1)$ broken by vev of "flavon" field θ with $U(1)$ charge $q_{\theta}=-1$. If vev $\theta=w$, and $w / M=\lambda$ we get for a generic interaction:

$$
\overline{\mathrm{R}}_{1} \mathrm{~m}_{12} \mathrm{~L}_{2} \mathrm{H}(\theta / \mathrm{M})^{\mathrm{q}^{1+\mathrm{q} 2+\mathrm{q}} \mathrm{H}} \quad \mathrm{~m}_{12}->\mathrm{m}_{12} \lambda \mathrm{q}^{1+\mathrm{q} 2+\mathrm{qH}}
$$

Hierarchy: More $\Delta_{\text {charge }}->$ more suppression ($\lambda=\theta / \mathrm{M}$ small)
One can have more flavons ($\lambda, \lambda^{\prime}, \ldots$) with different charges (>0 or <0) etc $->$ many versions

Anarchy can be realised in $\mathrm{SU}(5)$ by putting all the flavour structure in $\mathrm{T} \sim 10$ and not in $\mathrm{F}^{\text {bar }} \sim 5^{\text {bar }}$

```
mu ~ 10.10 strong hierarchy m}\mp@subsup{m}{u}{}:\mp@subsup{m}{c}{}:\mp@subsup{m}{t}{
m
                                    or me:m,
    Experiment supports that d, e hierarchy is roughly
    the square root of u hierarchy
m
                        anarchy
```

For example, for the simplest flavour group, $\mathrm{U}(1)_{\mathrm{F}}$

Is normal hierarchy compatible with large v mixings?

- In the 2-3 sector we need both
large $m_{3}-m_{2}$ splitting and large mixing.

$$
\begin{aligned}
& \mathrm{m}_{3} \sim\left(\Delta \mathrm{~m}^{2}{ }_{\mathrm{atm}}\right)^{1 / 2} \sim 510^{-2} \mathrm{eV} \\
& \mathrm{~m}_{2} \sim\left(\Delta \mathrm{~m}^{2}{ }_{\text {sol }}\right)^{1 / 2} \sim 910^{-3} \mathrm{eV}
\end{aligned}
$$

- The "theorem" that large $\Delta \mathrm{m}_{32}$ implies small mixing (pert. th.: $\left.\theta_{\mathrm{ij}} \sim 1 /\left|\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{j}}\right|\right)$
is not true in general: all we need is (sub) $\operatorname{det}[23] \sim 0$
- Example: $m_{23} \sim\left[\begin{array}{cc}x^{2} & x \\ x & 1\end{array}\right]$

Det $=0$; Eigenvl's: 0, $1+x^{2}$
Mixing: $\sin ^{2} 2 \theta=4 x^{2} /\left(1+x^{2}\right)^{2}$
So all we need are natural mechanisms for $\operatorname{det}[23]=0$

```
For x~1
large splitting
and large mixing!
```


Examples of mechanisms for $\operatorname{Det[23]~~0~}$

 based on seesaw: $\quad m_{v} \sim m^{\top}{ }_{D} M^{-1} m_{D}$1) $A \nu_{R}$ is lightest and coupled to μ and τ

King; Allanach; Barbieri et al......
$M \sim\left[\begin{array}{ll}\varepsilon & 0 \\ 0 & 1\end{array}\right] \longrightarrow M^{-1} \sim\left[\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & 1\end{array}\right] \approx\left[\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{m}_{v} \sim\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}1 / \varepsilon & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}a & c \\ b & d\end{array}\right] \approx 1 / \varepsilon\left[\begin{array}{cc}a^{2} & a c \\ a c & c^{2}\end{array}\right]$
2) M generic but m_{D} "lopsided"

$$
m_{D} \sim\left[\begin{array}{ll}
0 & 0 \\
x & 1
\end{array}\right]
$$

Albright, Barr; GA, Feruglio,

$$
m_{v} \sim\left[\begin{array}{ll}
0 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
x & 1
\end{array}\right]=c\left[\begin{array}{ll}
x^{2} & x \\
x & 1
\end{array}\right]
$$

An important property of $\mathrm{SU}(5)$

Left-handed quarks have small mixings ($\mathrm{V}_{\text {CKM }}$), but right-handed quarks can have large mixings (unknown).

cannot be exact, but approx.
Most "lopsided" models are based on this fact. In these models often large atmospheric mixing arises, at least in part, from the charged lepton sector.

- The correct pattern of masses and mixings, also including v 's, is obtained in simple models based on $\mathrm{SU}(5) \mathrm{xU}(1)_{\text {flavour }}$

Ramond et al; GA, Feruglio+Masina; Buchmuller et al; King et al; Yanagida et al, Berezhiani et al; Lola et al.......

Offers a simple description of hierarchies, but it is not very predictive (large number of undetermined o(1) parameters)

Of course, $\mathrm{SU}(5)$ can also be coupled with non abelian flavour symmetries, eg $\mathrm{O}(3)_{\mathrm{F}}, \mathrm{SU}(3)_{\mathrm{F}}, \mathrm{S} 3, \mathrm{~A} 4, \mathrm{~S} 4$ (see next lectures) and become more predictive

- SO(10) models are more predictive but less flexible

> Albright, Barr; Babu et al; Bajic et al; Barbieri et al;
> Buccella et al; King et al; Mohapatra et al; Raby et al;
> G. Ross et al

$\mathrm{SU}(5) \mathrm{xU}(1)$

Recall: $m_{u} \sim 1010$
$\mathrm{m}_{\mathrm{d}}=\mathrm{m}_{\mathrm{e}}{ }^{\top} \sim 5^{\text {bar }} 10$
$\mathrm{m}_{\mathrm{vD}} \sim 5^{\text {bar }} 1$; $\mathrm{M}_{\mathrm{RR}} \sim 11$
$\underset{\text { No structure }}{\text { Nor leptons }} \longrightarrow$
No automatic $\operatorname{det} 23=0$ Automatic $\operatorname{det} 23=0$

With suitable charge assignments all relevant patterns can be obtained \oplus

$\begin{aligned} & \text { 1st fam. } \searrow^{2 \text { nd }} \\ & \left\{\begin{array}{l} \Psi_{10}:(5,3,0) \\ \Psi_{5}:(2,0,0) \\ \Psi_{1}:(1,-1,0) \end{array}\right. \end{aligned}$				
Model	Ψ_{10}	$\Psi_{\overline{5}}$	Ψ_{1}	$\left(H_{u}, H_{d}\right)$
Anarchical (A)	$(3,2,0)$	(0,0,0)	(0,0,0)	(0,0)
Semi-Anarchical (SA)	$(2,1,0)$ char	$(1,0,0)$ es Po	$\begin{aligned} & (2,1,0) \\ & \text { tive } \\ & \hline \end{aligned}$	(0,0)
Hierarchical (H_{I})	$(6,4,0)$ all ch	$(2,0,0)$ arges	$(1,-1,0)$ ositive	(0,0)
Hierarchical ($H_{I I}$)	$(5,3,0)$	$(2,0,0)$	(1,-1,0)	$(0,0)$
Inversely Hierarchical ($I H_{I}$)	$(3,2,0)$	(1,-1,-1)	$(-1,+1,0)$	$(0,+1)$
Inversely Hierarchical ($I H_{I I}$)	$(6,4,0)$	(1,-1,-1)	$(-1,+1,0)$	$(0,+1)$

The optimised values of λ are of the order of λ_{c} or a bit larger (moderate hierarchy)

model	$\lambda\left(=\lambda^{\prime}\right)$
$A_{S S}$	0.2
$S A_{S S}$	0.25
$H_{(S S, I I)}$	0.35
$H_{(S S, I)}$	0.45
$I H_{(S S, I I)}$	0.45
$I H_{(S S, I)}$	0.25

Example: Normal Hierarchy

G.A., Feruglio, Masina'02

Note: not all charges positive
--> det23 suppression
$q(H)=0, q(\bar{H})=0$
$q(\theta)=-1, q\left(\theta^{\prime}\right)=+1$

In first approx., with $<\theta>/ \mathrm{M} \sim \lambda \sim \lambda^{\prime} \sim 0.35 \sim 0\left(\lambda_{c}\right)$

$$
\stackrel{\mathrm{m}_{\mathrm{u}}}{\mathrm{o}_{\mathrm{i}} 10_{\mathrm{j}}} \sim \mathrm{v}_{\mathrm{u}}\left[\begin{array}{lll}
\lambda^{10} & \lambda^{8} & \lambda^{5} \\
\lambda^{8} & \lambda^{6} & \lambda^{3} \\
\lambda^{5} & \lambda^{3} & 1
\end{array}\right]
$$

$$
m_{d}=m_{e}^{T} \sim v_{d}\left[\begin{array}{lll}
\lambda^{7} & \lambda^{5} & \lambda^{5} \\
\lambda^{5} & \lambda^{3} & \lambda^{3} \\
\lambda^{2} & \text { "lopsided" }
\end{array}\right]
$$

$$
\stackrel{\overline{5}_{\mathrm{i}} 1_{\mathrm{j}}}{\stackrel{\mathrm{~m}_{\mathrm{vD}}}{\sim}} \sim \mathrm{v}_{\mathrm{u}}\left[\begin{array}{lll}
\lambda^{3} & \lambda & \lambda^{2} \\
\lambda & \lambda^{\prime} & 1 \\
\lambda & \lambda^{\prime} & 1
\end{array}\right]
$$

$$
\stackrel{M_{R R}}{\mathrm{M}_{\mathrm{i}} 1_{\mathrm{j}}} \sim M\left(\begin{array}{lll}
\lambda^{2} & 1 & \lambda \\
1 & \lambda^{\prime 2} & \lambda^{\prime} \\
\lambda & \lambda^{\prime} & 1
\end{array}\right]
$$

Note: coeffs. O(1) omitted, only orders of magnitude predicted

$$
\begin{aligned}
& \text { with } \lambda \sim \lambda^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { see-saw } \quad m_{v} \sim m_{v D}^{\top} M_{R R}{ }^{-1} m_{v D}
\end{aligned}
$$

The 23 subdeterminant is automatically suppressed, $\theta_{13} \sim \lambda^{2}, \theta_{12,}, \theta_{23} \sim 1$

This model works, in the sense that all small parameters are naturally due to various degrees of suppression. But too many free parameters!!

$$
U=\left[\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Tri-Bimaximal mixing agrees with data at $\sim 1 \sigma$

At 1σ :
 G.L.Fogli et al'08

$$
\begin{aligned}
& \sin ^{2} \theta_{12}=1 / 3: 0.29-0.33 \\
& \sin ^{2} \theta_{23}=1 / 2: 0.41-0.54 \\
& \sin ^{2} \theta_{13}=0: \quad<\sim 0.02
\end{aligned}
$$

A coincidence or a hint?
There is an intriguing empirical relation:

$$
\theta_{12}+\theta_{C}=(47.0 \pm 1.7)^{\circ} \sim \pi / 4
$$

A coincidence or a hint?

For some time people considered limiting models with $\theta_{13}=0$ and θ_{23} maximal and θ_{12} generic
$\mathrm{m}_{v}=\operatorname{Udiag}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \mathrm{U}^{\top}$

$$
U=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

The most general mass matrix for $\theta_{13}=0$ and θ_{23} maximal
is given by (after ch. lepton diagonalization!!!):

Neglecting Majorana phases it depends on 4 real parameters (3 mass eigenvalues and 1 mixing angle: θ_{12})
Inspired models based on $\mu-\tau$ symmetry
Grimus, Lavoura..., Ma,.... Mohapatra, Nasri, Hai-Bo Yu

Actually, at present, since KamLAND, the most accurately known angle is θ_{12}

$$
\text { At } \sim 1 \sigma: \quad \sin ^{2} \theta_{12}=0.294-0.331
$$

G.L.Fogli et al'08

By adding $\sin ^{2} \theta_{12} \sim 1 / 3$ to $\theta_{13} \sim 0, \theta_{23} \sim \pi / 4$:

$$
U=\left[\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Harrison, Perkins, Scott '02

Some additional ingredient other than $\mu-\tau$ symmetry needed!

$$
U=\left[\begin{array}{ccc}
\sqrt{2} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Comparison with experiment:

At 1σ :

G.L.Fogli et al'08

$$
\begin{aligned}
& \sin ^{2} \theta_{12}=1 / 3: 0.29-0.33 \\
& \sin ^{2} \theta_{23}=1 / 2: 0.41-0.54 \\
& \sin ^{2} \theta_{13}=0: \quad<\sim 0.02
\end{aligned}
$$

[Thanks to KamLAND, the most accurately known angle is θ_{12}]

Called:
Tri-Bimaximal mixing
Harrison, Perkins, Scott '02

$$
\begin{aligned}
& v_{3}=\frac{1}{\sqrt{2}}\left(-v_{\mu}+v_{\tau}\right) \\
& v_{2}=\frac{1}{\sqrt{3}}\left(v_{e}+v_{\mu}+v_{\tau}\right)
\end{aligned}
$$

Tribimaximal Mixing

A simple mixing matrix compatible with all present data

$$
\begin{aligned}
& \qquad=\left[\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad m_{v}=\frac{m_{3}}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{m_{2}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{m_{1}}{6}\left[\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right] \\
& \text { Eigenvectors: } \quad m_{3} \rightarrow \frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \quad m_{2} \rightarrow \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad m_{1} \rightarrow \frac{1}{\sqrt{6}}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Note: mixing angles independent of mass eigenvalues
Compare with quark mixings $\lambda_{C} \sim\left(m_{d} / m_{s}\right)^{1 / 2}$

The most general mass matrix for $\sin ^{2} \theta_{12} \sim 1 / 3, \theta_{13} \sim 0, \theta_{23} \sim \pi / 4$

$$
\begin{aligned}
& {[\text { Tribimaximal Mixing }} \\
& m_{v}=\left(\begin{array}{ccc}
x & y & y \\
y & z & w \\
y & w & z
\end{array} \left\lvert\, \quad \longrightarrow \quad m=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right)\right.\right. \\
& \sin ^{2} 2 \theta_{12}=\frac{8 y^{2}}{(x-w-z)^{2}+8 y^{2}} \\
& m_{1}=x-y \\
& \mathrm{~m}_{2}=\mathrm{x}+2 \mathrm{y} \\
& \mathrm{~m}_{3}=\mathrm{x}-\mathrm{y}+2 \mathrm{v}
\end{aligned}
$$

The 3 remaining parameters are the mass eigenvalues

- For TB mixing matrix all mixing angles are fixed to particularly symmetric values

Sparked interest in constructing models that can naturally produce this highly ordered structure (very far from anarchy!)
Models based on the A4 discrete symmetry (even permutations of 1234) offer a minimal solution

> Ма...;

GA, Feruglio, hep-ph/0504165, hep-ph/0512103
GA, Feruglio, Lin hep-ph/0610165
GA, Feruglio, Hagedorn, 0802.0090 [hep-ph]
Y. Lin, 0804.2867 [hep-ph]........

Larger finite groups: $\mathrm{T}^{\prime}, \Delta(27), \mathrm{S} 4$
Feruglio et al; Chen, Mahanthappa; Frampton, Kephart; Lam; Bazzocchi et al \qquad
Alternative models based on $\mathrm{SU}(3)_{\mathrm{F}}$ or $\mathrm{SO}(3)_{\mathrm{F}}$ or their finite subgroups
King

List of models with flavor symmetries

(incomplete, by symmetry):

S_{3} : Pakvasa et al. (1978) Derman (1979), Ma (2000), Kubo et al. (2003), Chen et al. (2004), Grimus et al. (2005), Dermisek et al. (2005), Mohapatra et al. (2006), ...
S4: Pakvasa et al. (1979), Derman et al. (1979), Lee et al. (1994), Mohapatra et al. (2004), Ma (2006), Hagedorn, ML and Mohapatra (2006), Caravaglios et al. (2006), ...
\mathbf{A}_{4} : Wyler (1979), Ma et al. (2001), Babu et al. (2003), Altarelli et al. (2005,2000), He et al. (2006) ...
\mathbf{D}_{4} : Seidl (2003), Grimus et al. (2003,2004), Kobayashi et al. (2005), \ldots
D_{5} : Ma (2004), Hagedorn et al. (2006).
D_{n} : Chen et al. (2005), Kajiyama et al. (2007), Frampton et al. (1995,1996,2000), Frigerio et al. (2005), Babu et al. (2005), Kubo (2005), ...
$T^{\prime}:$ Frampton et al. (1994,2007), Aranda et al. (1999,2000), Feruglio et al. (2007), Chen and Mahanthappa (2007)
Δ_{n} : Kaplan et al. (1994), Chou et al. (1997), de Medeiros Varzielas et al. (2005), ...
\mathbf{T}_{7} : Luhn et al.

A4

A4 is the discrete group of even perm's of 4 objects. (the inv. group of a tetrahedron). It has $4!/ 2=12$ elements.

A4 transformations can be written in terms of S and T as:

$$
1, \mathrm{~T}, \mathrm{~S}, \mathrm{ST}, \mathrm{TS}, \mathrm{~T}^{2}, \mathrm{TST}, \mathrm{STS}, \mathrm{ST}^{2}, \mathrm{~T}^{2} \mathrm{~S}, \mathrm{~T}^{2} \mathrm{ST}, \mathrm{TST}^{2}
$$

with: $S^{2}=T^{3}=(S T)^{3}=1\left[(T S)^{3}=1\right.$ also follows]
An element is abd which means 1234 --> bcd
$\mathrm{C}_{1}: \quad 1=1234$
$\mathrm{C}_{2}: \quad \mathrm{T}=2314 \quad \mathrm{ST}=4132 \quad \mathrm{TS}=3241 \quad \mathrm{STS}=1423$
$\mathrm{C}_{3}: \quad \mathrm{T}^{2}=3124 \quad \mathrm{ST}^{2}=4213 \quad \mathrm{~T}^{2} \mathrm{~S}=2431 \quad \mathrm{TST}=1342$
$\mathrm{C}_{4}: \quad \mathrm{S}=4321 \quad \mathrm{~T}^{2} \mathrm{ST}=3412 \quad \mathrm{TST}^{2}=2143$
$\mathrm{x}, \mathrm{x}^{\prime}$ in same class if
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ are equivalence classes $\left[\mathrm{x}^{\prime} \sim \mathrm{gxg}^{-1}\right]$ element

A4 has 4 inequivalent irreducible representations: a triplet and 3 different singlets

$$
3,1,1^{\prime}, 1^{\prime \prime} \quad \text { (promising for } 3 \text { generations!) }
$$

Note:

> as many representations as equivalence classes

$$
\sum \mathrm{d}_{\mathrm{i}}^{2}=12 \quad 9+1+1+1=12
$$

S4 contains A4. S4 repr.ns: 3, 3', 2, 1, 1'

$$
9+9+4+1+1=24
$$

Note: many models tried S3
S3 has no triplets but only $2,1,1$ ' $4+1+1=6$
A4 is better in the lepton sector

Mohapatra, Nasri, Yu
Koide
Kubo et al
Kaneko et al
Caravaglios et al
Morisi
Picariello......

Three singlet inequivalent represent'ns:

$$
\begin{aligned}
& \text { Recall: } \\
& \mathrm{S}^{2}=\mathrm{T}^{3}=(\mathrm{ST})^{3}=1
\end{aligned} \quad\left\{\begin{array}{l}
1: S=1, T=1 \\
1 \quad: S=1, T=\omega \\
1 ": S=1, T=\omega^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \omega=\exp i \frac{2 \pi}{3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
& \omega^{3}=1 \\
& 1+\omega+\omega^{2}=0 \\
& \omega^{2}=\omega^{*}
\end{aligned}
$$

The only irreducible 3-dim represent'n is obtained by:

$$
S=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad T=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(S-diag basis)

An equivalent form:
$\begin{aligned} S^{\prime} & =\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right] \\ \omega & \underset{\text { (T-diag basis) }}{V S V^{\dagger} \quad T^{\prime}=}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right]=V T V^{\dagger}\end{aligned}$

$$
V V^{\dagger}=V^{\dagger} V=1
$$

$V=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]$

A4 has only 4 irreducible inequivalent represt'ns: $1,1^{\prime}, 1^{\prime \prime}, 3$

Table of Multiplication:
$1^{\prime} \times 1^{\prime}=1^{\prime \prime} ; 1^{\prime \prime} \mathrm{x} 1^{\prime \prime}=1^{\prime} ; 1^{\prime} \mathrm{x} 1^{\prime \prime}=1$
$3 \times 3=1+1^{\prime}+1^{\prime \prime}+3+3$

A4 is well fit for 3 families!
Ch. leptons $l \sim 3$

$$
e^{c}, \mu^{c}, \tau^{c} \sim 1,1^{\prime \prime}, 1^{\prime}
$$

For $3_{1}=\left(a_{1}, a_{2}, a_{3}\right), 3_{2}=\left(b_{1}, b_{2}, b_{3}\right)$ we have in $3_{1} \times 3_{2}$:

$$
\begin{array}{cl}
1=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} & 3 \sim\left(a_{2} b_{3}, a_{3} b_{1}, a_{1} b_{2}\right) \\
1^{\prime}=a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3} & 3 \sim\left(a_{3} b_{2}, a_{1} b_{3}, a_{2} b_{1}\right) \\
1^{\prime \prime}=a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3} &
\end{array}
$$

e.g. $1^{\prime \prime}=a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3}-->a_{2} b_{2}+\omega a_{3} b_{3}+\omega^{2} a_{1} b_{1}=$

$$
=\omega^{2}\left[a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3}\right]
$$

$\oplus \quad$ (under $S, 1^{\prime \prime}$ is invariant)

In the T-diagonal basis we have:

$$
V V^{\dagger}=V^{\dagger} V=1
$$

$S^{\prime}=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]=V S V^{\dagger} \quad T^{\prime}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right]=V T V^{\dagger} \quad V=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]$
For $3_{1}=\left(a_{1}, a_{2}, a_{3}\right), 3_{2}=\left(b_{1}, b_{2}, b_{3}\right)$ we have in $3_{1} \times 3_{2}$:

$$
1=a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}
$$

$$
1^{\prime}=a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}
$$

We will see that in this basis the charged leptons

$$
1 "=a_{2} b_{2}+a_{1} b_{3}+a_{3} b_{3}
$$ are diagonal

$3_{s y m m} \sim \frac{1}{3}\left(2 a_{1} b_{1}-a_{2} b_{3}-a_{3} b_{2}, 2 a_{3} b_{3}-a_{1} b_{2}-a_{2} b_{1}, 2 a_{2} b_{2}-a_{1} b_{3}-a_{3} b_{1}\right)$

$$
3_{\text {antisymm }} \sim \frac{1}{2}\left(a_{2} b_{3}-a_{3} b_{2}, a_{1} b_{2}-a_{2} b_{1}, a_{1} b_{3}-a_{3} b_{1}\right)
$$

What can be the origin of A4?
A4 (or some other discrete group) could arise from extra dimensions (by orbifolding with fixed points) as a remnant of 6-dim spacetime symmetry:
G.A.,F. Feruglio\&Y. Lin, NP B775(2007)31
 Adulpravitchai, Blum, Lindner '09

A torus with identified points:

$$
\begin{aligned}
& z->z+1 \\
& z->z+\gamma \quad \gamma=\exp (i \pi / 3)
\end{aligned}
$$

and a parity $z->-z$
leads to 4 fixed points
(equivalent to a tethraedron).
There are 4D branes at the fixed points where the SM fields live (additional gauge singlets are in the bulk)
\oplus A4 interchanges the fixed points

Under A4 the most common classification is:
lepton doublets $l \sim 3$, (in see-saw models $v^{\infty} \sim 3$)
$e^{c}, \mu^{c}, \tau^{c} \sim 1,1^{\prime \prime}, 1^{\prime}$ respectively
A4 breaking gauge singlet flavons $\phi_{S}, \phi_{\mathrm{T}}, \xi_{\ldots} \ldots 3,3,1 \ldots$
For SUSY version: driving fields $\phi_{0 S}, \phi_{0 T}, \xi_{0} \ldots \sim 3,3,1 \ldots$
with the alignment:

$$
\begin{aligned}
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \\
& \langle\xi\rangle=u,\langle\tilde{\xi}\rangle=0
\end{aligned}
$$

In a serious model the alignment must follow from the symmetries

In all versions there are additional symmetries: e.g. a broken $\mathrm{U}(1)_{\mathrm{F}}$ symmetry and/or discrete symmetries Z_{n} to ensure hierarchy of charged lepton masses and to restrict allowed couplings

A baseline A4 model (a 4-dim SUSY version with see-saw)

$$
\begin{array}{rlrl}
w_{l}= & y_{e} e^{c}\left(\varphi_{T} l\right)+y_{\mu} \mu^{c}\left(\varphi_{T} l\right)^{\prime}+y_{\tau} \tau^{c}\left(\varphi_{T} l\right)^{\prime \prime}+y\left(\nu^{c} l\right)+ & & \text { ch. leptons } \\
& +\left(x_{A} \xi+\tilde{x}_{A} \tilde{\xi}\right)\left(\nu^{c} \nu^{c}\right)+x_{B}\left(\varphi_{S} \nu^{c} \nu^{c}\right)+h . c .+\ldots & \text { neutrinos }
\end{array}
$$

shorthand: Higg, $\mathrm{U}(1)$ flavon θ, and cut-off scale Λ omitted, e.g.:

$$
y_{e} e^{c}\left(\varphi_{T} l\right) \sim y_{e} e^{c}\left(\varphi_{T} l\right) h_{d} \theta^{4} / \Lambda^{5}
$$

Fields and their transformation properties

	l	e^{c}	μ^{c}	τ^{c}	ν^{c}	$h_{u, d}$	θ	φ_{T}	φ_{S}	ξ	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	1	$1^{\prime \prime}$	1	3	1	1	3	3	1	3	3	1
Z_{3}	ω	ω^{2}	ω^{2}	ω^{2}	ω^{2}	1	1	1	ω^{2}	ω^{2}	1	ω^{2}	ω^{2}
$U(1)_{F N}$	0	4	2	0	0	0	-1	0	0	0	0	0	0
$U(1)_{R}$	1	1	1	1	1	0	0	0	0	0	2	2	2

In T-diag basis: with this alignment:

$$
\left\|\| \begin{array}{l}
\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \\
\langle\xi\rangle=u,\langle\tilde{\xi}\rangle=0
\end{array}\right.
$$

Ch. leptons are diagonal

$$
m_{l}=v_{T} \frac{v_{d}}{\Lambda}\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right)
$$

$$
y_{\tau} \approx O(1) y_{\mu} \approx O\left(\lambda^{2}\right) y_{e} \approx O\left(\lambda^{4}\right)
$$

v^{\prime} s are tri-bimaximal

$$
\begin{array}{r}
m_{\nu}^{D}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) y v_{u} \quad M=\left(\begin{array}{ccc}
A+2 B / 3 & -B / 3 & -B / 3 \\
-B / 3 & 2 B / 3 & A-B / 3 \\
-B / 3 & A-B / 3 & 2 B / 3
\end{array}\right) u \\
A \equiv 2 x_{A} \\
B \equiv 2 x_{B} \frac{v_{S}}{u}
\end{array}
$$

after see-saw $m_{\nu}=\left(m_{\nu}^{D}\right)^{T} M^{-1} m_{\nu}^{D}$

$$
\text { recall: } \left.\quad \begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right) \quad m_{\nu}=\frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
a+2 b / 3 & -b / 3 & -b / 3 \\
-b / 3 & 2 b / 3 & a-b / 3 \\
-b / 3 & a-b / 3 & 2 b / 3
\end{array}\right)
$$

\oplus

Alignment

One more singlet is needed for vacuum alignment
The superpotential (at leading order):

$$
\begin{aligned}
& \begin{array}{l}
w_{d}=M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)
\end{array} \quad \text { This term defines } \xi \text { twiddle } \\
& \quad \begin{array}{l}
\quad \\
\\
\text { and the potential } \quad g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \xi^{2} \\
\end{array} \quad V=\sum_{i}\left|\frac{\partial w}{\partial \phi_{i}}\right|^{2}+m_{i}^{2}\left|\phi_{i}\right|^{2}+\ldots
\end{aligned}
$$

Alignment

One more singlet is needed for vacuum alignment
The superpotential (at leading order):

$$
\begin{aligned}
w_{d} & =M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right) \quad \text { This term defines } \xi^{\text {twiddle }} \\
& +g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \tilde{\xi}^{2}
\end{aligned}
$$

$$
\text { and the potential } \quad V=\sum_{i}\left|\frac{\partial w}{\partial \phi_{i}}\right|^{2}+m_{i}^{2}\left|\phi_{i}\right|^{2}+\ldots
$$

The θ vev arises from minimizing the D-term

$$
V_{D}=\frac{1}{2}\left(M_{F I}^{2}-g_{F N}|\theta|^{2}+\ldots . .\right)^{2}
$$

The driving field have zero VEV. So the minimization is:

$$
\begin{array}{rlrl}
\frac{\partial w}{\partial \varphi_{01}^{T}} & =M \varphi_{T 1}+\frac{2 g}{3}\left(\varphi_{T_{1}}^{2}-\varphi_{T_{2}} \varphi_{T_{3}}\right)=0 & \frac{\partial w}{\partial \varphi_{01}^{S}}=g_{2} \tilde{\xi} \varphi_{S_{1}}+\frac{2 g_{1}}{3}\left(\varphi_{S_{1}}^{2}-\varphi_{S_{2}} \varphi_{S_{3}}\right)=0 \\
\frac{\partial w}{\partial \varphi_{02}^{T}}=M \varphi_{T_{3}}+\frac{2 g}{3}\left(\varphi_{\left.T_{2}^{2}-\varphi_{T_{1}} \varphi_{T_{3}}\right)=0}\right. & \frac{\partial w}{\partial \varphi_{02}^{S}}=g_{2} \tilde{\xi} \varphi_{S_{3}}+\frac{2 g_{1}}{3}\left(\varphi_{S_{2}}^{2}-\varphi_{S_{1}} \varphi_{S_{3}}\right)=0 \\
\frac{\partial w}{\partial \varphi_{03}^{T}}=M \varphi_{T_{2}}+\frac{2 g}{3}\left(\varphi_{T_{3}^{2}}^{2}-\varphi_{T_{1}} \varphi_{T_{2}}\right)=0 & \frac{\partial w}{\partial \varphi_{03}^{S}}=g_{2} \tilde{\xi} \varphi_{S_{2}}+\frac{2 g_{1}}{3}\left(\varphi_{S_{3}}^{2}-\varphi_{S_{1}} \varphi_{S_{2}}\right)=0 \\
\frac{\partial w}{\partial \xi_{0}} & =g_{4} \xi^{2}+g_{5} \xi \tilde{\xi}+g_{6} \tilde{\xi}^{2}+g_{3}\left(\varphi_{S_{1}}^{2}+2 \varphi_{S_{2}} \varphi_{S_{3}}\right)=0
\end{array}
$$

Solution:

$$
\begin{aligned}
\varphi_{T} & =\left(v_{T}, 0,0\right) \quad, \quad v_{T}=-\frac{3 M}{2 g} \\
\tilde{\xi} & =0 \\
\xi & =u \\
\varphi_{S} & =\left(v_{S}, v_{S}, v_{S}\right) \quad, \quad v_{S}^{2}=-\frac{g_{4}}{3 g_{3}} u^{2}
\end{aligned}
$$

Light neutrino eigenvalues (complex masses)

$$
m_{1}=\frac{y^{2}}{A+B} \frac{v_{u}^{2}}{u} \quad, \quad m_{2}=\frac{y^{2}}{A} \frac{v_{u}^{2}}{u} \quad, \quad m_{3}=\frac{y^{2}}{-A+B} \frac{v_{u}^{2}}{u}
$$

A sum rule typical of A4

$$
\frac{1}{m_{3}}=\frac{1}{m_{1}}-\frac{2}{m_{2}}
$$

Both normal and inverse hierarchy possible

Here is the inverse hierarchy case

Figure 1: Behaviour of neutrino masses in the inverted hierarchy case (at fixed $\Delta m_{\text {atm }}^{2}$ and r) as a function of α in the range between 0.07 and 2 (the lower bound on α corresponds to an upper bound on $\left|m_{i}\right|$). Left panel: $\left|m_{e e}\right|$. Right panel: $\left|m_{2}\right|,\left|m_{3}\right|$ and the ratio $\left|m_{3}\right| /\left|m_{2}\right|$.

So, at LO TB mixing is exact

$$
\mathrm{r} \sim \Delta \mathrm{~m}^{2}{ }_{\mathrm{sol}} / \Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}
$$

The only fine-tuning needed is to account for $r \sim 1 / 30$
[In most A4 models r ~ 1 would be expected as I, $v^{c} \sim 3$]
When NLO corrections are included from operators of higher dimension in the superpotential each mixing angle receives generically corrections of the same order $\delta \theta_{\mathrm{ij}} \sim \mathrm{o}(\mathrm{VEV} / \Lambda)$ As the maximum allowed corrections to θ_{12} (and also to θ_{23}) are $o\left(\lambda_{C}{ }^{2}\right)$, we need VEV/ $\Lambda \sim o\left(\lambda_{c}{ }^{2}\right)$ and we expect:
$\theta_{13} \sim o\left(\lambda_{c}{ }^{2}\right)$ measurable in next run of exp's
(T2K starts at the end of '09)
This generic prediction can be altered in ad hoc versions e.g. Lin ' 09 has a model where $\theta_{13} \sim o\left(\lambda_{c}\right)$

Why A4 works?

TB mixing corresponds to m in the basis where charged leptons are diagonal

$$
m=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right)
$$

m is the most general matrix invariant under $S m S=m$ and $A_{23} m_{23}=m$ with:

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad A_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& 2-3 \\
& \text { symmetry }
\end{aligned}
$$

Invariance under S can be made automatic in A4 while invariance under A_{23} happens if 1^{\prime} and 1 " flavons are absent.

Charged lepton masses are a generic diagonal matrix, invariant under T (or $\eta \mathrm{T}$ with η a phase):

$$
m_{l}^{+} m_{l}=T^{+} m_{l}^{+} m_{l} T
$$

$$
\begin{aligned}
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \\
& \langle\xi\rangle=u,\langle\tilde{\xi}\rangle=0
\end{aligned}
$$

The aligment occurs because is based on A4 group theory:
ϕ_{T} breaks A4 down to G_{T} ϕ_{s} breaks A4 down to G_{S} ($\mathrm{G}_{\mathrm{T}}, \mathrm{G}_{\mathrm{s}}$: subgroups generated by T, S)

$$
m_{l}=v_{T} \frac{v_{d}}{\Lambda}\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right)
$$

$$
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

Note that for TB mixing in A4 it is important that no flavons transforming as 1^{\prime} and $1^{\prime \prime}$ exist

Recently Lam claimed that for "a natural" TB model the smallest group is S4 (instead A4 is a subgroup of S4)

This is because he calls "natural" a model only if all possible flavons are introduced

We do not accept this criterium:
In physics we call natural a model if the lagrangian is the most general given the symmetry and the representations of the fields
(for example the SM is natural even if only Higgs doublets are present)

Many versions of A4 models exist by now

- with dim-5 effective operators or with see-saw
- with SUSY or without SUSY
- in 4 dimensions or in extra dimensions
e.g G.A., Feruglio'05; G.A., Feruglio, Lin '06; Csaki et al '08.....
- with different solutions to the alignment problem
e.g Hirsch, Morisi, Valle '08
- with sequential (or form) dominance
e.g King'07 ; Chen, King '09
- with charged lepton hierarchy also following from a special alignment (no U(1) $)_{\text {FN }}$) Lin'08; GA, Meloni'09
- extension to quarks, possibly in a GUT context

An economic version: ch. lepton hierarchy with no need of $\mathrm{U}(1)_{\mathrm{FN}}$

```
Y. Lin '08, '09
```

A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing

Guido Altarelli ${ }^{1}$
Dipartimento di Fisica 'E. Amaldi', Università di Roma Tre
INFN, Sezione di Roma Tre, I-00146 Rome, Italy
and
CERN, Department of Physics, Theory Division
CH-1211 Geneva 23, Switzerland
Davide Meloni ${ }^{2}$
Dipartimento di Fisica 'E. Amaldi', Università di Roma Tre INFN, Sezione di Roma Tre, I-00146 Rome, Italy

arXiv:0905.0620

The idea is to take a different alignment

\[

\]

Profit of this fact to arrange that τ, μ and e take mass at $o\left(\phi_{T}\right), o\left(\phi_{T}{ }^{2}\right)$ and $o\left(\phi_{T}{ }^{3}\right)$ respectively

The model:

Field	ν^{c}	ℓ	e^{c}	μ^{c}	τ^{c}	h_{d}	h_{u}	φ_{T}	ξ^{\prime}	φ_{S}	ξ	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	3	1	1	1	1	1	3	1^{\prime}	3	1	3	3	1
Z_{4}	-1	i	1	i	-1	1	i	i	i	1	1	-1	1	1
$U(1)_{R}$	1	1	1	1	1	0	0	0	0	0	0	2	2	2

$$
\begin{aligned}
w_{l}= & \frac{y_{\tau}}{\Lambda} \tau^{c}\left(\ell \varphi_{T}\right) h_{d}+ \\
& \frac{y_{\mu}}{\Lambda^{2}} \mu^{c}\left(\ell \varphi_{T} \varphi_{T}\right) h_{d}+\frac{y_{\mu}^{\prime}}{\Lambda^{2}} \mu^{c}\left(\ell \varphi_{T}\right)^{\prime \prime} \xi^{\prime} h_{d}+ \\
& \frac{y_{e}}{\Lambda^{3}} e^{c}\left(\ell \varphi_{T} \varphi_{T}\right)^{\prime \prime} \xi^{\prime} h_{d}+\frac{y_{e}^{\prime}}{\Lambda^{3}} e^{c}\left(\ell \varphi_{T}\right)^{\prime} \xi^{\prime 2} h_{d}+\frac{y_{e}^{\prime \prime}}{\Lambda^{3}} e^{c}\left(\ell \varphi_{T}\right)^{\prime}\left(\varphi_{T} \varphi_{T}\right)^{\prime \prime} h_{d}+ \\
& \frac{y_{e}^{\prime \prime \prime}}{\Lambda^{3}} e^{c}\left(\ell \varphi_{T}\right)^{\prime \prime}\left(\varphi_{T} \varphi_{T}\right)^{\prime} h_{d}+\frac{y_{e}^{\mathrm{iv}}}{\Lambda^{3}} e^{c}\left(\ell \varphi_{T}\right)_{1}\left(\varphi_{T} \varphi_{T}\right)_{1} h_{d}+\ldots .
\end{aligned}
$$

At LO ch. leptons are diagonal and hierarchical

$$
m_{\ell}=\left(\begin{array}{ccc}
\frac{v_{T} v_{d}}{\Lambda^{3}}\left(2 y_{e} v_{T} u^{\prime}+y_{e}^{\prime} u^{\prime 2}+y_{e}^{\prime \prime} v_{T}^{2}\right) & 0 & 0 \\
0 & \frac{v_{T} v_{d}}{\Lambda^{2}}\left(2 y_{\mu} v_{T}+y_{\mu}^{\prime} u^{\prime}\right) & 0 \\
0 & 0 & \frac{y_{\tau} v_{d} v_{T}}{\Lambda}
\end{array}\right)
$$

The v sector is as usual

Alignment

$$
\begin{aligned}
& \qquad \begin{aligned}
& w_{d}=M\left(\varphi_{0}^{S} \varphi_{S}\right)+g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \xi\left(\varphi_{0}^{S} \varphi_{S}\right)+g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+M_{\xi} \xi_{0} \xi \\
&+M_{0}^{2} \xi_{0}+h_{1} \xi^{\prime}\left(\varphi_{0}^{T} \varphi_{T}\right)^{\prime \prime}+h_{2}\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right) \\
& \hline T \text { This } \xi^{\prime} \text { term is crucial }
\end{aligned} \longrightarrow \begin{array}{|c|c|c|c||}
\hline \varphi_{T} & \xi^{\prime} & \varphi_{S} & \xi \\
\hline 3 & 1^{\prime} & 3 & 1 \\
\hline \mathrm{i} & \mathrm{i} & 1 & 1 \\
\hline 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial w}{\partial \varphi_{01}^{T}} & =2 h_{2}\left(\varphi_{T_{1}}^{2}-\varphi_{T 2} \varphi_{T 3}\right)+h_{1} \xi^{\prime} \varphi_{T 3}=0 \\
\frac{\partial w}{\partial \varphi_{02}^{T}} & =2 h_{2}\left(\varphi_{T_{2}}^{2}-\varphi_{T_{1}} \varphi_{T_{3}}\right)+h_{1} \xi^{\prime} \varphi_{T_{2}}=0 \\
\frac{\partial w}{\partial \varphi_{01}^{T}} & =2 h_{2}\left(\varphi_{T 3}^{2}-\varphi_{T 1} \varphi_{T 2}\right)+h_{1} \xi^{\prime} \varphi_{T 1}=0
\end{aligned}
$$

with solution:

$$
\left\langle\xi^{\prime}\right\rangle=u^{\prime} \neq 0, \quad\left\langle\varphi_{T}\right\rangle=\left(0, v_{T}, 0\right), \quad v_{T}=-\frac{h_{1} u^{\prime}}{2 h_{2}}
$$

