Detector Basics II

Mark Messier
Indiana University
Neutrino Summer School
Fermilab, July 7th, 2009

EXO	/ 1	
CUORE	// 2	
Majorana/GERDA	/// 3	
SuperNEMO	//// 4	
KATRIN	// 2	
LVD	/ 1	
KamLAND	/ 1	
BOREXINO	// 2	ReSuta
DoubleCHOOZ	/////// 7	OSults OfMy
Daya Bay	//////// 8	
Hanohano	/ 1	In@ex CəO
SNO+	// 2	
MiniBooNE	// 2	
MicroBooNE	// 2	SuMVeV
MINOS	////////// 10	SUFVy
MINERvA	// 2	
T2K/SK/MEMPHYSIS	////////// 10	Answers to questions posted at:
NOVA	////// 6	http://enrico1.physics.indiana.edu/messier/post/
LqAr	//// 4	nss09qanda.txt
Ice Cube	//// 4	
Pierre Auger	/ 1	

Neutrino detectors

Topics for the remaining two lectures

- Today
- Cherenkov detectors
- Tracking calorimeters
- Thursday
- tau neutrino detection
- Large liquid scintillator detectors
- Time projection chambers

Cherenkov detectors

6000 mwe overburden

SNO

ANTARES

NEMO

Super-Kamiokande

General performance

- Sensitive to a wide range of energies. Capable of electron and photo detection down to $\sim 5 \mathrm{MeV}$
- Tracks produce rings on the walls. In high multiplicity events overlap of rings makes reconstruction difficult. Typically, analyses focus on quasi-elastic events which are very often single-track events.
- For single track QE events, neutrino energy reconstructed from kinematics (see next slides)

- Events with pions (and other tracks) that are below Cherenkov threshold lead to backgrounds for the quasi-elastic selection

SNO
6000 mwe overburden

Angle between v and sun

- SNO detector used $1 \mathrm{kt} \mathrm{D}_{2} \mathrm{O}$ instead of ordinary water. Provided additional detection channels at low energy: $\nu_{x}+e \rightarrow \nu_{x}+e \quad \mathrm{ES}=\mathrm{CC}+1 / 6 \mathrm{NC}$

$$
\begin{aligned}
& \nu_{e}+d \rightarrow p+p+e^{-} \quad \mathrm{CC} \\
& \nu_{x}+d \rightarrow p+n+\nu_{x} \quad \mathrm{NC}
\end{aligned}
$$

$$
n+d \rightarrow t+\gamma+6.25 \mathrm{MeV}
$$

- Neutron tagging by:

$$
\begin{array}{r}
n+{ }^{35} \mathrm{Cl} \rightarrow{ }^{36} \mathrm{Cl}+\gamma+8.6 \mathrm{MeV} \\
n+{ }^{3} \mathrm{He} \rightarrow p+t+0.76 \mathrm{MeV}
\end{array}
$$

Cherenkov effect

- If speed of charged particle exceeds speed of light in a dielectric medium of index of refraction n, a "shock wave" of radiation develops at a critical angle:

$$
\cos \theta_{C}=\frac{1}{\beta n}, \beta>\frac{1}{n}
$$

- PMTs record time and charge which provide unique solution for track position and direction. For Nhit PMTs measuring light arrival time t , minimize:

$$
\chi^{2}=\sum_{i=1}^{N_{\mathrm{hit}}} \frac{\left(t_{i}-T O F_{i}\right)^{2}}{\sigma_{t}^{2}}
$$

where TOF is the time of flight for photons to go from the track to the PMT

10 TeV neutrino induced muon neutrino in Ice Cube

Times differ by roughly 2.5 usec. For PMT with ~10 ns time resolution this gives an up vs. down discrimination of >250 sigma!

Cherenkov effect

- Threshold means that slow particles produce no light. As particles come to a stop their rings collapse. Useful for particle

$$
p_{\mathrm{thresh}}=m \sqrt{\frac{1}{n^{2}-1}}
$$ ID near threshold.

		$p_{\text {thresh }}[\mathrm{MeV} / \mathrm{c}]$				θ_{C}		
		e	μ	π	K	p	$\beta=1$	$\beta=0.9$
Water	$\mathrm{n}=1.33$	0.58	120	159	563	1070	42	33
Mineral Oil	$\mathrm{n}=1.46$	0.47	98	130	458	817	47	41

- Number of photons produced per unit path length: $\frac{d^{2} N}{d x d \lambda}=\frac{2 \pi \alpha z^{2}}{\lambda^{2}}\left(1-\frac{1}{\beta^{2} n(\lambda)^{2}}\right)=370 \sin ^{2} \theta_{C}(E) / \mathrm{eV} / \mathrm{cm}$
- In both oil and water the useful part of this spectrum is between 300 and 600 nm bracketed by Rayleigh scattering on the low end and absorption on the high end

Photomultiplier tubes

Photon incident on the photocathode produces a photoelectron via the photoelectric effect. Probability to produce a
photoelectron is called the quantum efficiency of the PMT.

Output signal is seen as a current delivered to the anode. Typical gains are 10^{6} yielding pC-scale currents

A series of plates called dynodes are held at high voltage by the base such that electrons are accelerated from one dynode to the next. At each stage the number of electrons increases. Probability to get first electron from the photocathode to the first dynode is called the collection efficiency.

100 ns transit time, 2.2 ns time resolution

Quiz

Q: Estimate the vertex resolution for a water Cherenkov detector for a 10 MeV electron produced by the elastic scatter of a solar neutrino. Assume 40\% of the detector walls are covered by PMT's and that the PMT's have an average of 25% efficiency. Estimate the energy resolution at this energy.

Quiz

Q: Estimate the vertex resolution for a water Cherenkov detector for a 10 MeV electron produced by the elastic scatter of a solar neutrino. Assume 40\% of the detector walls are covered by PMT's and that the PMT's have an average of 25% efficiency. Estimate the energy resolution at this energy.
A: A 10 MeV electron will go about 5 cm in the tank making about $\mathrm{N}=$ $370^{*} \sin \left(42^{\circ}\right)^{2}=160$ photons. Of those $\left(0.4^{*} 0.25\right)=0.1$ will be detected. So I have ~ 16 detected photons each with a timing resolution of $2 \mathrm{~ns} \sim=(60 \mathrm{~cm}$ * 1.33) $=80 \mathrm{~cm}$ since the speed of light is $n * 30 \mathrm{~cm} / \mathrm{ns}$. This gives a final resolution of about: $80 \mathrm{~cm} / \mathrm{sqrt}(16)=20 \mathrm{~cm}$. Energy resolution dominated by Poisson fluctuations on the number of photons collected. In this case ~sqrt(16)/16 = 25\%.

Quiz

Q: Estimate the vertex resolution for a water Cherenkov detector for a 10 MeV electron produced by the elastic scatter of a solar neutrino. Assume 40% of the detector walls are covered by PMT's and that the PMT's have an average of 25% efficiency. Estimate the energy resolution at this energy.
A: A 10 MeV electron will go about 5 cm in the tank making about $\mathrm{N}=$ $370^{*} \sin \left(42^{\circ}\right)^{2}=160$ photons. Of those $\left(0.4^{*} 0.25\right)=0.1$ will be detected. So I have ~ 16 detected photons each with a timing resolution of $2 \mathrm{~ns} \sim=(60 \mathrm{~cm}$ * $1.33)=80 \mathrm{~cm}$ since the speed of light is $n * 30 \mathrm{~cm} / \mathrm{ns}$. This gives a final resolution of about: $80 \mathrm{~cm} / \mathrm{sqrt}(16)=20 \mathrm{~cm}$. Energy resolution dominated by Poisson fluctuations on the number of photons collected. In this case ~sqrt(16)/16 = 25\%.

Q: Compare the detection efficiencies for the Kamiokande (20\% photocathode coverage) and IMB-1 (1\% photocathode coverage) for a 15 MeV super-nova neutrino

Quiz

Q: Estimate the vertex resolution for a water Cherenkov detector for a 10 MeV electron produced by the elastic scatter of a solar neutrino. Assume 40\% of the detector walls are covered by PMT's and that the PMT's have an average of 25% efficiency. Estimate the energy resolution at this energy.
A: A 10 MeV electron will go about 5 cm in the tank making about $\mathrm{N}=$ $370^{*} \sin \left(42^{\circ}\right)^{2}=160$ photons. Of those $\left(0.4^{*} 0.25\right)=0.1$ will be detected. So I have ~ 16 detected photons each with a timing resolution of $2 \mathrm{~ns} \sim=(60 \mathrm{~cm}$ * $1.33)=80 \mathrm{~cm}$ since the speed of light is $n * 30 \mathrm{~cm} / \mathrm{ns}$. This gives a final resolution of about: $80 \mathrm{~cm} / \mathrm{sqrt}(16)=20 \mathrm{~cm}$. Energy resolution dominated by Poisson fluctuations on the number of photons collected. In this case \sim sqrt(16)/16 = 25\%.

Q: Compare the detection efficiencies for the Kamiokande (20\% photocathode coverage) and IMB-1 (1\% photocathode coverage) for a 15 MeV super-nova neutrino
A: 15 MeV corresponds to about 240 photons which is about 0.6 detected photons on average in IMB and 12 in Kamiokande. Efficiency for detection is roughly $1-\exp (-0.6)=45 \%$ for $I M B$ and 1-exp $(-12)=99.99 \%$ for Kamiokande.

Water Cherenkov: Ring Counting

If you know the pattern you are looking for (line, circle, oval, etc.) the Hough transform is a method for converting a pattern recognition problem to a peak finding problem

Circles overlap
in center of ring corresponding to direction of particle

Ring counting likelihood

Super-Kamiokande

Run 4168 Event 1350418

-	> 182
\bullet	160-182
\bullet	137-160
\bullet	114-137
\bullet	91- 114
\bullet	68- 91
\bullet	45-68
\bullet	22-45
-	0- 22
-	-22- 0
-	-45- -22
-	-68- -45
-	-91- -68
-	-114- -91
-	-137--114
-	<-137

Quasi-elastic reconstruction $\nu_{\mu}+n \rightarrow \mu+p$

$$
E_{\nu}=\frac{m_{N} E_{l}-m_{l}^{2} / 2}{m_{N}-E_{l}+p_{l} \cos \theta_{l}}
$$

From 2 body kinematics

Figure 2: (left) The scatter plots of the reconstructed neutrino energy versus the true one for ν_{μ} events. The method of the energy reconstruction is expressed in Equation 14. (right) The energy resolution of ν_{μ} events for 2 degree off-axis beam. The shaded (red) histogram is for the true QE events.

Water Cherenkov: e/ μ identification

- At low momenta one can correlate the particle visible energy with the Cherenkov angle. Muons will have "collapsed" rings while electrons are ~always at 42°.

- At higher momenta, look at the distribution of light around Cherenkov angle. Muons are "crisp", electron showers are "fuzzy". See plots and figures at the right.

Super-Kamiokande muer: 1904 hits, 5179 pE outer: 5 hits, 6 pE (in-time) Trigger II: 0x07
D wall: 885.0 cm
FC mu-like, $\mathrm{p}=766.0 \mathrm{mev} / \mathrm{c}$

Super-Kamiokande Run 4268 Event 7899421 97-06-23:03:15:57
Imer: 2652 hits, 5741 pI
outer: 3 hits, 2 pE (in-time)
Trigger ID: 0×07
D wall: 506.0 cm
FC e-like, $p=621.9 \mathrm{meV} / \mathrm{c}$

Water Cherenkov: e/ μ identification

- At low momenta one can correlate the particle visible energy with the Cherenkov angle. Muons will have "collapsed" rings while electrons are ~always at 42°.

- At higher momenta, look at the distribution of light around Cherenkov angle. Muons are "crisp", electron showers are "fuzzy". See plots and figures at the right.

Super-Kamiokande Tmere: 1904 hits, 5179 pE outer: 5 hits, 6 , PE (in-time)
Trigger II: 0×07 Trigger ID: 0×07
D wall: 885.0 cm
D wall: 885.0 cm
FC mu-like, $\mathrm{p}=766.0 \mathrm{mev} / \mathrm{c}$

Resid(ns)

Useful trick: Count decay electrons from $\pi \rightarrow \mu \rightarrow e$ decay. Good way to count π 's and μ 's that are below threshold

Super-Kamiokande Run 4268 Event 7899421 97-06-23:03:15:57
Tmer: 2652 hits, 5741 pE
outer: 3 hits, 2 pE (in-time)
Trigger DI: 0x07
D wall: 506.0 cm
FC $6-1 \mathrm{like}, \mathrm{p}=621.9 \mathrm{mev} / \mathrm{c}$

Super-Kamiokande

Water Cherenkov: e/ μ identification

- At low momenta one can correlate the particle visible energy with the Cherenkov angle. Muons will have "collapsed" rings while electrons are ~always at 42°.

- At higher momenta, look at the distribution of light around Cherenkov angle. Muons are "crisp", electron showers are "fuzzy". See plots and figures at the right.

Jseful trick: Count decay electrons from $\pi \rightarrow \mu \rightarrow e$ decay. Good way to count π 's and μ 's that are below threshold

Super-Kamiokande Run 4268 Event 7899421 97-06-23:03:15:57
Tmer: 2652 hits, 5741 pE
outer: 3 hits, 2 pE (in-time)
Trigger DI: 0x07
D wall: 506.0 cm
FC e-like, $p=621.9 \mathrm{meV} / \mathrm{c}$

Particle ID in Ice Cube

10 TeV muon neutrino induced upward muon

375 TeV electron neutrino

1-Ring, e-Like Reconstruction Efficiency vs Reconstructed Energy for v_{e} CC Events

Additional selections:

no decay electrons: $\quad 14 \% 19 \% 76 \%$
signal energy window (T2K) 1\% 16\% 58\%
π^{0} likelihood fit
0.4\% 10\% 42\%

1-Ring, μ-Like Reconstruction Efficiency vs Reconstructed Energy for v_{μ} CC Events

Reconstruction Efficiency vs Reconstructed Energy for NC Events

Notice: NC events
much more likely to be e-like than μ-like due to π^{0} production

Pushing the technology: Sub-GeV to Multi-GeV

wble 060 disappearance 1300 km / 0 km

100 kt water detector in multi-GeV 2 MW wide band beam Fermilab to Homestake

2 GeV visible energy
 One is signal, the other background

2 GeV visible energy
One is signal, the other background

$v_{\mathrm{e}} \mathrm{CC}$

NC π^{0}

US DUSSEL Underground lab

Hyper-Kamiokande

Megaton Scale Water
Cherenkov
Detectors

Fréjus

Present Laboratory

MEMPHYS

20% or 40% Photocathode coverage?

PMT's cost $\sim \$ 3 K$ USD and are one of the schedule drivers for construction of very large water Cherenkov detectors. Can you live with fewer?

	Super-K I (40\% coverage)	Super-K II (20\% coverage)
Sub-GeV vertex resolution	26 cm (e-like) / 23 cm (μ-like)	30 cm (e-like)/ 29 cm (μ-like)
Sub-GeV particle mis-ID	0.81\% (e-like) / 0.70\% (μ-like)	0.69\% (e-like) / 0.96\% (μ-like)
Sub-GeV momentum resolution	4.8\% (e-like) / 2.5\% (μ-like)	6.3\% (e-like) / 4.0\% (μ-like)
$\mathrm{p} \rightarrow \mathrm{e}^{+} \pi^{0}$ signal efficiency	$40.8 \pm 1.2 \pm 6.1 \%$	$42.2 \pm 1.2 \pm 6.3 \%$
$\mathrm{p} \rightarrow \mathrm{e}^{+} \pi^{0}$ background	0.39($\pm 35 \%$) events/100kty	0 events/100kty
$\mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{v}, \gamma$ tag signal efficiency	$8.4 \pm 0.1 \pm 1.7 \%$	$4.7 \pm 0.1 \pm 1.0 \%$
$\mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{V}, \gamma$ tag background	0.72($\pm 28 \%$) events/100kty	1.4($\pm 30 \%$) events/100kty
$\mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{v}, \pi^{+} \pi^{0}$ signal efficiency	$5.5 \pm 0.1 \pm 0.7 \%$	$5.7 \pm 0.1 \pm 0.4 \%$
$\mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{v}, \pi^{+} \pi^{0}$ background	0.59($\pm 28 \%$) events/100kty	1.0($\pm 30 \%$) events/100kty
T2K CCv ${ }_{\mathrm{e}}$ likelihood effic.	83.7\% ($\pm 0.1 \%$ stat)	84.8 \%
T2K BG likelihood effic.	21.3 \%	21.5 \%

F. Dufour, T2KK Workshop (2006)

Preliminary numbers, for comparison purposes. Final published efficiencies and BG may differ.

Tracking calorimeters

INO

The MINOS Detectors

MINOS uses two

 functionally equivalent detectors:- 2.54 thick magnetized steel plates
- $4.1 \times 1 \mathrm{~cm}$ co-extruded scintillator strips
- optical fiber readout to multi-anode PMT's

"strong back". Removed after plane is hung in place

Ionization excitation of base plastic

- Scintillation light is emitted in a distribution peaked typically around $350-400 \mathrm{~nm}$. It is common to use compounds (eg. PPO, POPOP) which absorb this light and re-emit it at longer wavelengths where the scintillator has less absorption and where the fiber absorbs strongly.
- Light is captured by the fiber at typically 420 nm and reemitted at around 470 nm and is carried to the ends by total internal reflection. Transport characterized by a short attenuation length ($\sim 2 \mathrm{~m}$) and a long attenuation length ($\sim 8 \mathrm{~m}$).
- Final photon spectrum is well matched to wavelength response of PMT's

Fred Reines and Clyde Cowan. 1995 Nobel to Reines for the detection of the neutrino

Los Alamos Science, Number 251997

Project Poltergeist, 1953

MINOS scintillator system

Single strip muon hit efficiency Single sided: $\varepsilon=1-\exp (-2)=86 \%$ Double sided:
$\varepsilon=1-\exp (-8)=99.97 \%$

Fig. 26. Average light output from in-situ Far Detector strips as a function of distance from their center for normally incident MIPs. The data shown are from stopping cosmic-ray muons, for which containment criteria cause lower statistical precision at the ends of the strips.

MINERvA

- MINERvA incorporates several improvements in tracking resolution
- Triangularly extruded scintillator bars allows track position to be estimated by light-sharing fractions
- Three tracking views. Resolves ambiguity when track travels along one of the strip directions or overlaps with another track in one view

Why magnetize?

- Containment: A magnetic field can keep muons from exiting the sides of your detector
- Momentum measurement: If the muon does exit your detector, the curvature of the track tells you the momentum even when you couldn't otherwise get it from the range of the particle
- Charge sign: There are physics measurements in knowing the charge sign of the muons in your detector. Crucial for the "golden channel" at a

Cosmic-ray $\mu+/ \mu$ - ratio neutrino factory:

$$
\mu^{+} \rightarrow e^{+} \bar{\nu}_{\mu} \nu_{e} \varliminf_{\substack{ \\
\nu_{e} \rightarrow \nu_{\mu} \\
\text { oscillation }}}^{\begin{array}{c}
\bar{\nu}_{\mu} \\
\nu_{\mu}+A \rightarrow \mu^{+}+X \\
\nu_{\mu}+A \rightarrow \mu^{-}+X
\end{array}}
$$

Magnetic field in MINOS

Fig. 6. Sketch of a cross section of one of the far detector supermodule coils. The larger diameter circles represent the copper cooling tubes and the smaller circles are the 190 tums of 10 gauge stranded copper wire. The outlines of these condoctors are to-scale represemations of the insulator thickness. The outer circumference of the assembly is a copper-sheet jacket that is directly cooled by eight cooling tubes.

- 15.2 kA-turn total current
- 80 A supply
- 10 gauge copper wire, water cooled

MINOS Event

Track momentum using curvature

A particle with momentum p, traveling through a constant transverse magnetic field B will travel on a circle of radius ϱ

$$
\begin{aligned}
p\lfloor\mathrm{GeV} / c\rfloor & =0.2998 B\lfloor\mathrm{~T}\rfloor \rho\lfloor\mathrm{m}\rfloor \\
\rho & =\frac{l^{2}}{8 s}+\frac{s}{2} \\
p & \simeq 0.3 \frac{B l^{2}}{8 s}
\end{aligned}
$$

Measurement of sagitta and chord gives you momentum. Detector resolution on sagitta is the same as the momentum resolution:

$$
\left|\frac{\delta p}{p}\right|=\left|\frac{\delta s}{s}\right|
$$

More common to talk about the track curvature

$$
k=\frac{1}{\rho}
$$

which has roughly Gaussian errors.

Curvature errors for multiple position samples

- The uncertainty in curvature for a track which travels a distance L in a magnetic field B whose position is sampled N times at uniform intervals with a position uncertainty ε has been worked out by Gluckstern [NIM 24 (1963) 381-389]:

$$
\sigma_{k, R}^{2}=\frac{\epsilon^{2}}{L^{4}} \frac{720}{N+5}
$$

Notice relative importance of
L and ε

- Gluckstern has also worked out the contribution to the uncertainty in the curvature from multiplescattering:

$$
\sigma_{k, M . S .}^{2}=\frac{K C_{N}}{L}
$$

- K is the RMS projected multiple scattering angle per unit thickness x

$$
K=\frac{\theta_{0}}{\sqrt{3} x}
$$

$=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{\frac{1}{3 x X_{0}}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]$

- C_{N} is a constant from lookup table. $C_{N}=1.43$ for large N .
$-x$ is the distance traveled in the medium
$-z$ is the charge of the particle

How well do we measure track curvature?

Tracking in the NEMO-3 detector ($2 \mathrm{v} \beta \beta$)

Low density medium and excellent sagitta measurement yields about a 4\%
measurement
for electrons at
4 MeV

The NOvA Experiment

- NOvA is a second generation experiment on the NuMI beamline which is optimized for the detection of $V_{\mu} \rightarrow V_{e}$ and $\bar{V}_{\mu} \rightarrow \bar{V}_{e}$ oscillations
- NOvA is:
- An upgrade of the NuMI beam intensity from 400 kW to 700 kW
- A 15 kt "totally active" tracking liquid scintillator calorimeter sited 14 mrad off the NuMI beam axis at a distance of 810 km
- A 215 ton near detector identical to the far detector sited 14 mrad off the NuMI beam axis at a distance of 1 km

Liquid scintillator

 (14.8M liters, 12.6 ktons)Contained in 3.9×6.6 cell cells of length 15.7 m -18 m attenuation length
-5.5\% pseudocumene

Extruded PVC

(5.4 ktons)
15% anatase TiO_{2} for high reflectivity

Wavelength shifting fiber

(18k km)

- 0.7 mm diameter
- Looped, both ends to same readout pixel

Avalanche photodiodes (APD)
(14k boards, 32 channels each)

- 85\% quantum efficiency at long wavelengths
- Collect 30 photoelectrons per muon crossing at far end of cell

Detector design

Wall reflectivity

- In NOvA cell, a photon typically bounces off the cell walls 10 times before being captured by a fiber
- This makes the reflectivity of the cell wall of crucial importance to maximizing light output:
- $0.8^{10}=0.11$
- $0.9^{10}=0.35$

10\% improvement in reflectivity yields factor 3 more light!

Wall reflectivity is issue for other scintillator detectors which co-extrude scintillator with a TiO2 reflective coating

Avalanche photo diodes (APD)

Absorption region

Multiplication region

High (80\%) quantum efficiency even into UV
Large dark currents - must be cooled to $-15^{\circ} \mathrm{C}$ to get noise down to ~ 10 pe equivalent

Low gains, x100

NOvA Fiber and Photodetector

The high QE of APD's, especially at long wavelength, is crucial to NOvA performance

$v_{e}(2.4 \mathrm{GeV})+\mathbf{N} \rightarrow \mathrm{e}^{-}(1.8 \mathrm{GeV})+\mathrm{X}($ Res $)$

Electron neutrino signal event

Electron and pion tracks reconstructed

Sample signal and background events in NOvA

Sample signal and background events in NOvA

	Neutrino Running	Antinetrino Running	Total	Efficiency (Includes fiducial cut)
v_{e} signal	75.0	29.0	104	36%
Backgrounds:	14.4	7.6	22	
v_{μ} NC	6.0	3.6	9.6	0.23%
v_{μ} CC	0.05	0.48	0.53	0.004%
Beam v_{e}	8.4	3.4	11.8	14%
FOM	19.8	10.5	22.1	

Numbers generated assuming:
$\sin ^{2}\left(2 \theta_{13}\right)=0.10, \sin ^{2}\left(2 \theta_{23}\right)=1.0$, and $\Delta \mathrm{m}_{32}{ }^{2}=0.0024 \mathrm{eV}^{2}$

Event selection

$\nu_{\mu}(1.4 \mathrm{GeV})+\mathrm{N} \rightarrow \mu^{-}(1.0 \mathrm{GeV})+X(Q E L)$

ν_{μ} Quasi-Elastic Event

$\nu_{\mu}(1.4 \mathrm{GeV})+\mathrm{N} \rightarrow \mu^{-}(1.0 \mathrm{GeV})+X(Q E L)$

Proton ID from dE/dx

ν_{μ} Quasi-Elastic Event

