COMSOL Simulations AND Electric Field Map generation

Laura Zambelli - LAPP/CNRS
Wednesday February 26th

COMSOL MultiPhysics

Software to study many physics process for engineering and research
-> Not free, Licence is very (very) expensive
-> CERN can provide one licence, upon request with justification http://information-technology.web.cern.ch/services/software/comsol It comes with one restriction : you have to be physically at cern to run it (no ssh tunneling would work).

Caveat: I've never used COMSOL up to last week, I was only handling the output given to me by someone else

COMSOL for the 666

We have two sources of field distorsions :

1. The short
2. The Space charge effect
-> Studying effect 1 . is fairly easy, effect 2 . is a bit more complicated.
Filippo explained to me how to introduce the short in a simplified 666 geometry and compute stationary field computation.

$\boldsymbol{F Y I}$: I'll be using the non-LArsoft coordinate where z is along the cathode-> anode axis and the $(0,0,0)$ is at the center of the detector

Drift field with short

Open COMSOL > Wizard > 3D > AC/DC > Electric Fields \& Current > Electrostatics > Stationary

1. Define a set of useful parameters

-> Voltage at short is 10 kV lower than cathode (?)
2. Define the geometry (in our case 2 cubes)

-> Above short ; Below short

Drift field with short

3. Define the physics

4. Define the electric potentials

a plane for the anode \& cathode z-dependent potentials for anode->short and short->cathode

Drift field with short

5．Discretize the volumes

6．Compute solution

＇｜．Model Builder	厥 Settings
	Study
aZambelli＿mine55．mph（root）＝Compute C＇Update Solution	
－（）Global Definitions Pi Parameters 1	Label：Study 1
${ }_{4}^{4} \mathbf{4}$ Materials	－Study Settings
－－Component 1 （compl）	Generate default plots
－ミ Definitions	\square Generate convergence plots
Materials	\square store solution for all intermediate study steps
－＊Electrostatics（es）	\square Plot the location of undefined values
Mesh 1	
－ 2 Study 1	－Information
［ Step 1：Stationary	Last computation time：
－Iflos Solver Configurations	9 s
－遍 Results	
－IIII Datasets	
眺 Tables	
－ 3 －Plot Group 1	
－＊ 1 D Plot Group 2	
－遗 Export	
開 Reports	

7．Get the results

8．Save results

Model Builder－ロ	Settings Data Export		－\square	
－© Global Definitions P_{i} Parameters 1	Label：Data 1			
${ }_{\text {uill Materials }}$	－Data			
－I－Component 1 （compl）	Datase：Study 1／Solution 1 （sol1）			
＊\equiv Definitions				
	－Expressions			
Hit Materials			＋	
\triangle Mesh 1	Expression	Unit	Description	
Study 1	es．norme	V / cm	Electric field ！	
－ E Step 1：Stationary $^{\text {a }}$	es．Ex	v / cm	Electric field，	
－lifro Solver Configurations	es．Ey	v / cm	Electric field，	
－道 Results －ie Datasets	es．Ez	v / cm	Electric field，	
${ }^{85}$				
罭 Tables				
－E－3D Plot Group 1				
－＊1D Plot Group 2	Expression：			
－迴 Export				
Data 1				
盛 Reports				

Drift field with short - things to be improved

To be improved :

- more precise values of detector geometry (h $\times \mathrm{w} \times \mathrm{l}$), short position
- Do we include the field cage rings ? (there is a possibility to import CAD drawings - don't know how though) the FFS ?

O There is a field discontinuity at $\mathrm{z}=$ short : this is a problem with the interpolation : shall we build 2 maps?

- For the light analysis, it is also important to take into account the field below the cathode (which is reversed and much higher than inside the charge fiducial volume) -> there will be an

ZOOM AROUND SHORT POSITION
 other discontinuity (at $\mathrm{z}=$ cathode) : shall we build 3 maps?

COMSOL output and map maker

From the COMSOL output

From each of these points, "electrons" are "transported" to the detector boundary, by steps of 1 mm : - start at ($x 0, y 0, z 0$), field is (Ex0,Ey0,Ez0)

- next point will be at $(x 1, y 1, z 1)=(x 0+E x 0 / E t o t, y 0+E y 0 / E t o t, z 0+E z 0 / E t o t)$
- etc

At each step :

- increment distance travelled
- increment drifting time(+= step/vdrift(Etot))
- increment the transverse and longitudinal diffusion (field dependent, see here for more details)

Once boundary is reached :

- store x and y displacement

All these parameters (plus field value) are then stored in 3D histograms -> the field maps
An 3D interpolation is used to "propagate" the "electrons"

Interpolation

So far, I've generated maps with 20 bins/axis <-> a precision of $(326.3 \times 326.3 \times 310.5) \mathrm{mm}^{3}$ The choice of the binning is a trade between precision (esp. in region with rapid change), CPU time and output file size

In the simulation, when electrons are produced at (x, y, z) coordinate, their arrival time and position on the anode are determined from a 3D interpolation from the 8 -nearby point stored in the maps
it's a weighted average, see: https://en.wikipedia.org/wiki/ Trilinear interpolation

Near the boundary:
standard problem - want to know the value at x given that the last known point is c
easy way : assume no further variation from the last point

extrapolation way : make extrapolation from interpolated points around the last value

x_{1} is the symmetric of x wrt c x_{2} is in between x_{1} and c

$$
y=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} x+\frac{x_{1} y_{2}-y_{2} y_{1}}{x_{1}-x 2}
$$

666 Short with Vcathode $=50 \mathrm{kV}$

e- drift lines from cathode

666 Short with Vcathode $=50 \mathrm{kV}$

Values of the drift field at different z positions

666 Short with Vcathode $=50 \mathrm{kV}$

666 Short with Vcathode $=50 \mathrm{kV}$

Drift Field with Vcathode

Drift Field with Vcathode

