ProtoDUNE-DP light data integration in LArSoft

J. Soto DRA meering 26th February 2020

GOBIERNO MI DE ESPAÑA DE E I

MINISTERIO DE CIENCIA E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Content

- Where the light data is?
- Importing light data into LArSoft.
- Pending things.
- Bonus: Status of the light simulation in LArSoft.

Where the light data is?

• Light data is in eos:

/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/ROOT/

- (New) Structured in subfolders:
 - 000 for runs from 0 to 999.
 - 001 for runs from 1000 to 1999, and so on.
- Every run has a certain number of subruns (depending of the length of the run and the data rate):

[np02lro@lxplus778 R00T]\$ ls /eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/*1005_*
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0000.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0002.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0003.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0003.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0003.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0004.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0005.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0005.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0006.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0008.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0008.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0008.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/output_001005_0008.root
/eos/experiment/neutplatform/protodune/rawdata/np02/PMT/R00T/001/outpu

• Simple root files. Data structured has been already explained by Clara, and there is a link in the twiki:

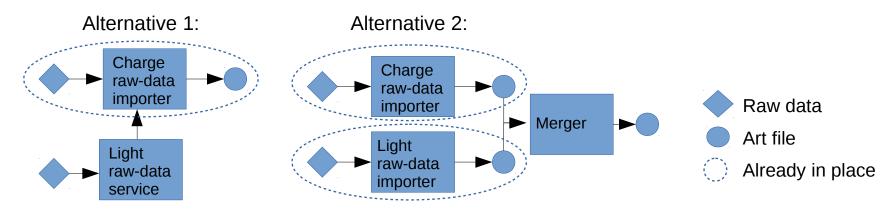
https://twiki.cern.ch/twiki/pub/CENF/DUNEProtDPOps/ProtoDUNE_LightData_191119.pdf

• Many analysis already started:

https://indico.fnal.gov/event/20144/session/7/contribution/83/material/slides/0.pdf

Importing light data into LArSoft

- There is a module available in a feature branch to import the light data into LArSoft format (not yet in the general repository): **feature/jsoto_PDDP_PMTRawDataImporter**
- In this branch, the module lives in **dunetpc/dune/Protodune/dualphase/RawDecoding**
- How to run it?
 - Install LarSoft (version v08_38_01 -qe17:prof).
 - Download dunetpc (mrb g dunetpc), and move into the branch (git checkout feature/jsoto_PDDP_PMTRawDataImporter)
 - Compile and go to srcs/dunetpc/dune/Protodune/dualphase/RawDecoding
 - Run: lar -c pddp_pmtdaq_converter.fcl output_001663_0000.root
 - It creates the art file: **output_001663_0000_pddprawdata.root**
- Output file contains the following art objects (standard objects, same as Single Phase):
 - Raw::OpDetWaveforms: The raw waveforms for all channels.
 - Raw::RDStatus: An object that store information about the data integrity.
 - Raw::RDTimeStamps: The White Rabbit timestamps.

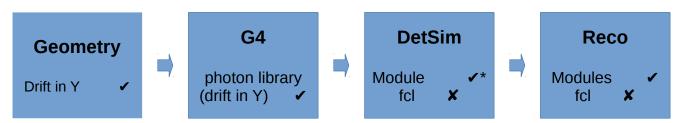

Importing light data into LArSoft

- Comments and warnings for analyzers:
 - The module takes care of the different ADC channel-PMT mapping for every run.
 - LArSoft channel numbering depends on the geometry (drift in Y or drift in X). Only drift in Y geometry is supported.
 - We haven't processed all the files for now: If the analyzer wants to have a look, he has to convert the file itself as explained in the previous slide.
- About the light data reconstruction:
 - Dedicated Dual-Phase reconstruction modules were developed for the TDR studies, and they work, creating the standard light reco objects (OpHits and OpFlashes, same as Single-Phase).
 - However a dedicated fcl file needs to be created and validated (the ones available now are for the Far Detector).
 - Also new software will be needed. For example to take care of the different gains per pmt/run (now it assumes a fixed gain, given by a fcl parameter, and it is unpractical when processing several runs).

Pending...

- The importer module is light stand-alone, it does not consider CRT or TPC charge information.
- In the future we want to have all charge, light and CRT data in the same files:
 - Alternative 1: Modify the light raw data importer module to be a service that provides the light information per event when decoding the charge data given its time stamp.
 - Alternative 2: Once light and charge has been imported separately, merge them event by event in a separate step (maybe easier to implement, but slower).

 \rightarrow To do this, we will need to be using the same geometry in both, charge and light (I expect the charge will move towards the drift in Y geometry soon).


• This will allow to do t0 reconstruction studies easily, and charge-light combined analysis.

Status of light simulation in protoDUNE-DP

- DONE:
 - ProtoDUNE-DP geometry is fully simulated with the drift in Y. Cathode, ground grid, field cage are included and PMT positions are up-to-date (including PEN/TPB differences).
 - One light map has been generated with this new geometry, and will be available soon in the general repository (some crosschecks ongoing).
- TO BE DONE:
 - DetSim step:
 - To check and validate the fcl parameters (sampling, dynamic range...)
 - To improve the PMT response simulation, as the PMT characterization studies advance.
 - Reco: Same as for raw data: Create and validate a fcl file.

* For newcomers: https://cdcvs.fnal.gov/redmine/projects/dunetpc/wiki/Photon_Simulation_Tutorial

Summary

- Light data can be already analyzed using LArSoft.
- Importing and reconstruction works, but the reco fcl parameters needs to be validated.
- The system is still not robust for batch processing and some new software will be needed.
- Merging charge and light data in the same art files is pending, and hopefully will be done once the charge moves to the drift-in-Y geometry.
- The light simulation framework is almost ready, we only need to adapt the fcl parameters to the protoDUNE-DP photon detection system characteristics in the detector simulation step.

Thank you

