
Making geo::Geometry (and other services) thread-safe

Kyle J. Knoepfel
25 February 2020
LArSoft coordination meeting

• Service scope definitions
– LEGACY: service that can be used with only one schedule and only one thread configured
– SHARED: service that can be used with n schedules and m threads

Making services thread-safe

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting2

• Service scope definitions
– LEGACY: service that can be used with only one schedule and only one thread configured
– SHARED: service that can be used with n schedules and m threads

• Several impediments to making services thread-safe:
– Many services have state that is updated throughout processing

• (e.g.) “current event” data, has no meaning when multiple events are being processed at the
same time

– LArSoft uses many services that are polymorphic
• Until now, art has required any SHARED service interface to have a matching SHARED service

implementation.
• This means that all implementations of a service interface must be thread-safe.

– Limited effort

Making services thread-safe

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting3

• Service scope definitions
– LEGACY: service that can be used with only one schedule and only one thread configured
– SHARED: service that can be used with n schedules and m threads

• Several impediments to making services thread-safe:
– Many services have state that is updated throughout processing

• (e.g.) “current event” data, has no meaning when multiple events are being processed at the
same time

– LArSoft uses many services that are polymorphic
• Until now, art has required any SHARED service interface to have a matching SHARED service

implementation.
• This means that all implementations of a service interface must be thread-safe.

– Limited effort

Making services thread-safe

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting4

Today, I will discuss ways to move forward on thread-safety.

• Same product stack as before
• Still supports macOS Mojave (SIP disabled)
• (Nearly) decouples service interface scope from implementation scope
– LEGACY service interfaces must have LEGACY implementations
– SHARED service interfaces may have either SHARED or LEGACY implementations

• One implementation’s thread-safety has no bearing on another’s

art 3.05 to be released this week

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting5

MyInterface (SHARED)

MySharedImpl (SHARED)

MyLegacyImpl (LEGACY)

• A PR for this week’s release includes a new class that ensures only one art
schedule has been configured for the job

lar::EnsureOnlyOneSchedule

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting6

• A PR for this week’s release includes a new class that ensures only one art
schedule has been configured for the job

lar::EnsureOnlyOneSchedule

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting7

class MyLegacyImpl : public MyInterface {
};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, LEGACY)

class MySharedImpl : public MyInterface {
};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, SHARED)

1 schedule and
1 thread

n schedules and
m threads

• A PR for this week’s release includes a new class that ensures only one art
schedule has been configured for the job

lar::EnsureOnlyOneSchedule

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting8

class MyLegacyImpl : public MyInterface {
};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, LEGACY)

class MySharedImpl : public MyInterface {
};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, SHARED)

1 schedule and
1 thread

n schedules and
m threads

Suppose a service cannot support concurrent events, but it can support multiple threads

• A PR for this week’s release includes a new class that ensures only one art
schedule has been configured for the job

lar::EnsureOnlyOneSchedule

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting9

class MyLegacyImpl : public MyInterface {
};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, LEGACY)

class MySharedImpl : public MyInterface {
};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, SHARED)

class MySharedImpl : public MyInterface,
private lar::EnsureOnlyOneSchedule {

};

DECLARE_ART_SERVICE_INTERFACE_IMPL(MyLegacyImpl, MyInterface, SHARED)

1 schedule and
1 thread

n schedules and
m threads

1 schedule and
m threads

• Broadly speaking, the geometry system is thread-safe within a run
– Will not discuss the issue of run-dependent geometries here

Geometry service (and friends)

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting10

• Broadly speaking, the geometry system is thread-safe within a run
– Will not discuss the issue of run-dependent geometries here

• There are some entanglements with the ExptGeoHelperInterface interface
– Implementations of ExptGeoHelperInterface have been allowed to adjust the
geo::GeometryCore object.

– The interface exposed by ExptGeoHelperInterface can, in principle, be called
anywhere, which is the primary thread-safety issue.

• The changes implemented in my PRs remove the entanglement of
geo::GeometryCore with ExptGeoHelperInterface.

Geometry service (and friends)

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting11

ExptGeoHelperInterface changes

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting12

class ExptGeoHelperInterface {
public:
using ChannelMapAlgPtr_t = std::shared_ptr<const ChannelMapAlg>;

virtual ~ExptGeoHelperInterface() = default;

void
ConfigureChannelMapAlg(fhicl::ParameterSet const& sortingParameters,

geo::GeometryCore* geom);

ChannelMapAlgPtr_t GetChannelMapAlg() const;

private:

virtual
void
doConfigureChannelMapAlg(fhicl::ParameterSet const& sortingParameters,

geo::GeometryCore* geom) = 0;

virtual
ChannelMapAlgPtr_t
doGetChannelMapAlg() const = 0;

};

Before PR

GeoHelper directly
adjusts the GeometryCode
while still co-owning the
channel map algorithm.

Configure function is not
‘const’, and it is accessible
from anywhere via a handle.

ExptGeoHelperInterface changes

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting13

class ExptGeoHelperInterface {
public:
using ChannelMapAlgPtr_t = std::unique_ptr<ChannelMapAlg>;

virtual ~ExptGeoHelperInterface() = default;

ChannelMapAlgPtr_t
ConfigureChannelMapAlg(fhicl::ParameterSet const& sortingParameters,

std::string const& detectorName) const;

private:

virtual
ChannelMapAlgPtr_t
doConfigureChannelMapAlg(fhicl::ParameterSet const& sortingParameters,

std::string const& detectorName) const = 0;
};

After PR
GeoHelper calculates and
returns the map algorithm.

Interface is ‘const’.

Only the detector name is
passed to the function.

Ownership of the channel
map algorithm is no longer
shared but belongs to the
caller.

ExptGeoHelperInterface usage changes in Geometry service

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting14

Similar changes made for AuxDetExptGeoHelperInterface and its use.

• GeoObjectSorter (and related code) no longer relies on geometry collections to
own by pointer instead of by value:

Other simplifications

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting15

• It is possible that the changes on the previous page will conflict with some pixel-
geometry efforts Gianluca is working on.
– I propose adopting the changes on the previous page, and then I will work with Gianluca to

adjust the interface once we determine a change is necessary.

• Geometry and AuxDetGeometry service callbacks now private.
• All (AuxDet)Geometry and (AuxDet)ExptGeoHelperInterface services

have been marked SHARED.
• Any code that creates service handles to these classes must link against
${ART_UTILITIES}

• Pull requests here:
– https://github.com/LArSoft/larcorealg/pull/3
– https://github.com/LArSoft/larcore/pull/3

Other changes

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting16

https://github.com/LArSoft/larcorealg/pull/3
https://github.com/LArSoft/larcore/pull/3

• dunetpc:feature/knoepfel_threadsafe_geometry
• icaruscode:feature/knoepfel_threadsafe_geometry
• lariatsoft:feature/knoepfel_threadsafe_geometry
• sbndcode:feature/knoepfel_threadsafe_geometry
• ubcore:feature/knoepfel_threadsafe_geometry
• ubcrt:/feature/knoepfel_threadsafe_geometry

Feature branches for the experiments

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting17

• Once art 3.05 is adopted, changing service interface scopes to SHARED will be
quick (for places where it makes sense).

• For services that depend on ‘current’ events, changing the scope to SHARED and
inheriting from lar::EnsureOnlyOneSchedule can also happen relatively
quickly (e.g. DetectorClocks, DetectorProperties, etc.)

• We are actively working on how to make the following services thread-safe:
– DetectorClocks (https://indico.fnal.gov/event/22735/contribution/1/material/slides/0.pdf)
– ChannelStatus (will likely be a “producing service” as supported by art)

• General guidance:
– Service implementations generally should not have header files
– Reduce mutable state and the number of side effects

• Avoid functions that do not return anything

Timescale for other services

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting18

https://indico.fnal.gov/event/22735/contribution/1/material/slides/0.pdf

