DUNE full FD
 Geometry

Aran Borkum

DUNE

- Motivation for doing the full geometry
- Construction of the full geometry
- Safety checks
- Initial things that are working
- Closing thoughts

- It all started with J. Beacom

- Backgrounds group want to better understand neutrons in the far detector
- This was practically impossibly with the workspace geometry
- Issues with using the 1x2x6
- Neutrons generally travel 30-100m in LAr before capturing
- The radiological simulation for the $1 \times 2 \times 6$ does not allow for trivial scaling to the full geo
- Other motivating factors
- Good opportunity to revise the material definitions in the geometry
- Good opportunity to include more complex, realistic volumes to the geometry
- Even better opportunity to migrate away from using Perl and use Python instead
- Development in GEGEDE
- Python module

Build is parameterised and adjustable with config file

- Hierarchal structure so outer elements have to fit around inner elements
- Possibility for exotic geometries
- As mentioned $1 \times 2 \times 6$ results aren't trivially scalable
- You could define specific active regions and
ignore as much or as little of the detector as
- You could define specific active regions and
ignore as much or as little of the detector as you'd like
- Theoretical shielding could be applied to the detector
Basic water shielding has already been explored

- Addition of new volumes

 explored


```
[Cryostat]
subbuilders = ['TPC']
class
membraneThickness
cathodeThickness
nAPAs
# nAPAS
outerAPAs
#outerAPAs
sideLAr
APAToFloor
APAToGAr
APAToUpstreamWall =Q('301.2cm')
APAToDownstreamWall =Q('49.2cm')
```


- DuneGGD in-situ Tests
- Goal: incapable of creating a geometry that breaks LArSoft
- Wires have consistent endpoints and pitches
- Origin in intended place
- ROOT macro
- checks overlaps, default draw options
- LArSoft Tests
- Existing GeoObjectSorter and ChannelMap works
- LArG4 output looks reasonable
- IDEs where there are TPCActive, true dE/dx maps out APA Frames and other vol's
- Check DetSim with EVD scans
- Replaced GDML: Important standard FCLs still work
- Go as far as checking Track/Vtx Reco?

- TPC plane wire placement

- The collection plane is very easy to build
- Induction wire planes are very annoying to build
- Generation of wire points
- Using an external module the position of the wires is calculated
- These values are stored in a spreadsheet and read when constructing the geometry
- Verifying correct wire placement
- LArSoft says so!

Scientist: *slaps roof of detector* This bad boy can fit so many wires in it


```
Initializing channel map...
%MSG
Cryostat 0:
    384000 total channels
    150 APAs
    For all identical APA:
        Number of channels per APA = 2560
        U channels per APA = 800
        V channels per APA = 800
        Z channels per APA = 960
        Pitch in U Plane = 0.4667
        Pitch in V Plane = 0.4667
        Pitch in Z Plane = 0.479
```


- Photon Detector System

- The APA-Frame has 80 optical detectors (Green)
- The light paddles (Red) are spaced properly so the distance stays constant when stacked vertically
- Issues
- The optical detectors aren't the right size
- More definitive measurements are needed
- For some reason the g4 fhicl can't find OpFastScintillation.cxx, not clear why this is
- This means the process seg-faults

- Actions

- Need help from the simulation gurus on how to handle this
- Write new fhicl's so things can be done now

- Critical elements

- The bulk of the python script
- "Databases" of materials -> elements, mixtures and molecules
- Standard volume sizes
- Python script
- Now that it's done it remains fairly static
- Changes will indefinitely need to be made
- Materials
- I decided to have these in external CSVs for now so they can be changed on the fly
- These are parsed into the python script

- Standard Volumes

- This is not necessarily parsed into anything, more for reference
- This will include things like wire diameter, cryostat dimension, ARAPUCA dimensions, etc

- What is there to version

- The python scripts that control the construction
- The materials database
- The standard volumes
Geometry_vAB_MN_XY

- Radiological neutron studies

- New geometry means we can get more realistic neutron capture rate estimations
- Can exploit pre-existing generators and now produce particles from specified volumes
- Theoretical volumes can be added (motivation to study water passive shielding)

Neutrons produced from 30cm
layer around the detector cavern

nCaptureXY

- Ran an electron neutrino event through the whole MC chain
- Hit finding on all three planes: Trigger primitive finder on collection and running sum hit finder on induction planes

U-Plane

- New DUNE-FD Geometry

- The geometry is now complete to a working order
- Numerous versions do exist for different purposes
- Material definitions and precise measurements will be required in the future
- Work with relevant experts is required to improve the running efficiency so we can include PDS and non-compressed detector simulation and submit for a full scale productions
- Other geometries?
- Are the geometries that have different values of the pitch wanted?
- Are the geometries that have different values of the wire angle wanted?
- Is there anything else people might want/need?
- Anything else?

