Updates on v_{τ} CC selection analysis based on kinematic analysis, combined with current CVN performance.

LBL weekly meeting -24th February 2020

Thomas Kosc — <u>kosc@ipnl.in2p3.fr</u>

2nd year PhD student at Institut de Physique des Deux Infinis (Lyon, France) Supervisor : Dario AUTIERO

Abstract

• Following previous presentation at DUNE collab meeting of Jan. 2020 at CERN. Developing a v_{τ} CC kinematic analysis and assess the selection efficiencies.

• Likelihood approach, using impinging beam neutrino transverse plan kinematic. **Preliminary** results shown, suffering an oversight of neutrino oscillation probabilities (my bad !).

Dune Collab meeting plot

• Objective: give the collaboration an updated and more correct oversight of the analysis being developed. Oscillation probabilities are computed with GLoBES v3.2.17 (still struggling with CAFANA framework, I wanted to be able to show quick updates so I'll struggle later...)

For the Recall - Kinematic Method

• CVN four main event classification categories —> each associated with a "likeness" output (between 0 and 1) ~ probabilities (as they sum to 1).

CVN results #1 : v_{τ} **CC distribution in CVN output**

In the file: oscillated ν_{μ} —> ν_{τ} (main flux), contamination of $\overline{\nu}_{\mu}/\nu_{\mu}$ (from $\overline{\nu}_{e}/\nu_{e}$ osc.), $\overline{\nu}_{\tau}$ (from $\overline{\nu}_{e}$ osc.)

CVN results #2 : CVN distribution of τ decay modes

Oscillation weight & CVN selection effect on kinematic distributions #1

Oscillation weight & CVN selection effect on kinematic distributions #2

Likelihood analysis for τ^{\pm} **-->e[±] decay mode #1**

17.41% : μ decay **17.83%** : e[±] decay **64.76%** : hadronic decay

As many analyses as decay mode...

2

-3

-2

-1

0

Thomas Kosc / IP2I (Lyon, France)

Evaluate S/sqrt(B) #2

0.2

(0.2; 1.37)

0

-1

68%

2 3 Log(Ls/Lb)

2

3

Thomas Kosc / IP2I (Lyon, France)

CVN output MC tau decay	3.5 years staged #events	CVN efficiency —> v _e CC	LH efficiency (illusttration)	Other ?	Events remaining
$\nu_e CC$	1167	72.4 %	25 %	/	211 (out of 845)
$\nu_{\tau} \mathrm{CC}$	173	46 %	66 %	17.8 % (τ—>e BR)	9 (out of 14)

Normalisation idea to 3.5 years staged number of events

Outlook/Discussion

- Developing a combined CVN/kinematics analysis, applied to v_{τ} beam selection (à la NOMAD). Updates following the lack of oscillation weigthing, now done ! Not much impact.
- The track of the tau lepton won't be visible at DUNE: look at its decay modes ! 1 decay mode = 1 dedicated kinematical analysis. Efforts currently deployed for τ —>e+2 ν . Need to extend to other decay modes.
- Additional reconstruction effects to be implemented in computing the likelihoods (already done last year on personnal sample, not re-implemented yet).
- Current CVN v_{τ} CC selection efficiency ~ 16% (mainly hadronic decays). Number likely to evolve.
- Work in progress in developing and optimizing the likelihoods for all decay channels and in computing related backgrounds.
- Nutau optimized flux and interaction type (QEL, RES and DIS) analysis.

