Fermilab (ENERGY Office of Science

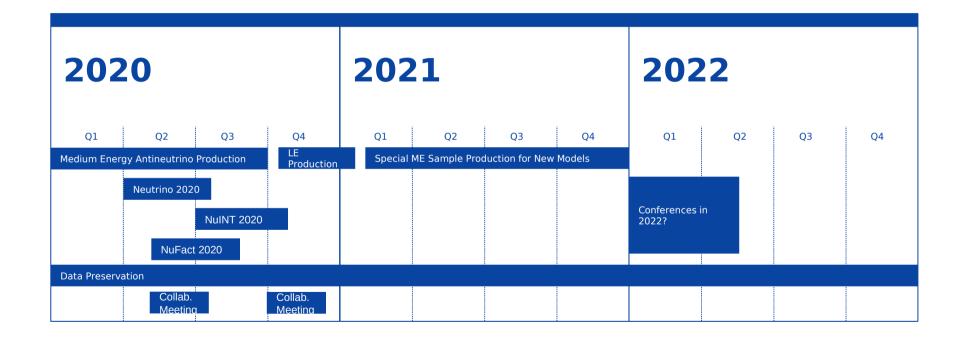
Minerva SCPMT 2020

Experiment Organization Chart for Offline Computing

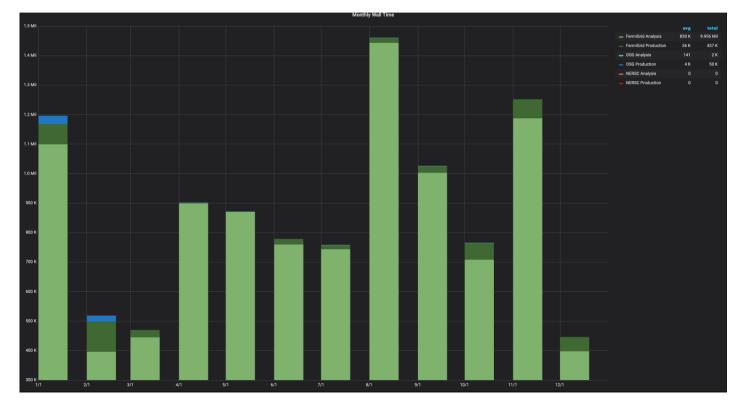
•Computing:

- Offline Infrastructure Coordinator: Andrew Olivier (Rochester)
- Team Members: Satyajit Jena (IISER Mohali), Hang Su (Pittsburgh), David Last (UPenn)

•Production:


- Production Coordinator: Deepika Jena (Fermilab)
- Team Members: Luis Zazueta (William and Mary), Jennica LeClerc (University of Florida)

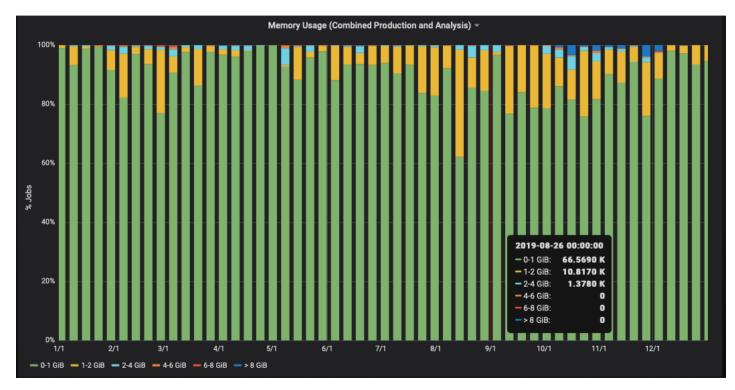
•Analysis Coordinator: Dan Ruterbories (Rochester)


- •Release management coordinated by computing team
- •Priority for computing team is production

<Minerva>

Important Dates to Remember

CPU - Experiment Usage Over the Last Year


No plan for HEPCloud. Focusing on stability

•

.

Delay publication if peak not attainable

Memory Footprint Over the Last Year

CPU and Memory Efficiency Over the Last Year

40%

20%

- No planned improvements .
- Low hanging fruit: reduce • default memory request?

Are CPU-inefficient jobs waiting on streamed input files? Database access?

<Minerva>

CPU - Prediction Going Forward and Accuracy of Your Predictions [units of Million (1 CPU, 2GB) wall hours per CY]

	2017	2018	2019	2020	2021	2022
Requested		18.31	16.7	16.24	14	12
Actual Used	10.47	14.02	10.39	? thru Feb	N/A	N/A
Efficiency	?	77%	62%	To date:	N/A	N/A

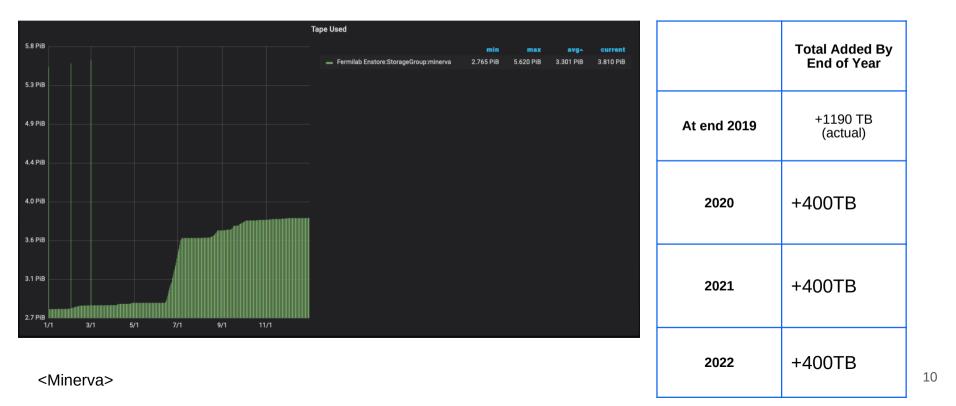
CPU Adaptations Going Forward

How can MINERvA use OSG/HPC/HEPCloud going forward?

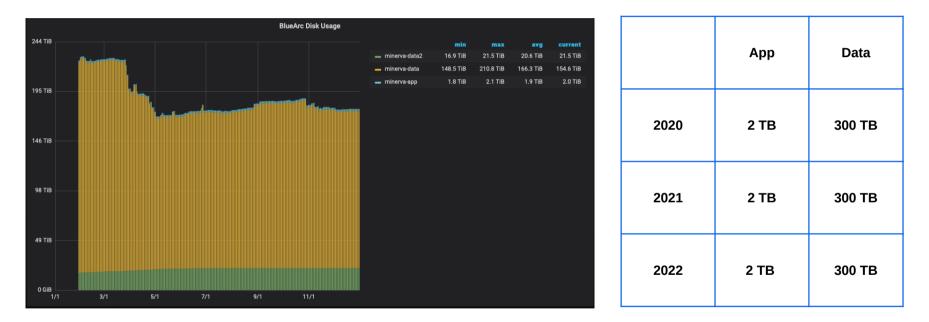
- GENIE jobs for production can use OSG
- MINOS reconstruction blocks other production stages because of old libraries
- 2 analysis stages:
 - Gaudi stage: More library requirements \rightarrow not feasible on OSG with current human power
 - Macro stage: ROOT without framework
 - Far fewer library requirements
 - Higher dimensional analyses need > 2GB
 - \rightarrow investigate using OSG for 1D analyses?

Disk: dCache Usage and Predictions (in TB)

	Disk Space Used by Pool Group 👻								
1.1 PiB		min	max-	avg	current	[Г
	Fermilab Public dCache:StorageGroup:minerva_readWritePools	108 TiB	605 TiB	383 TiB	496 TiB				
	 Fermilab Public dCache:StorageGroup:minerva_MinervaAnalysisPools 	88 TiB	230 TiB	196 TiB	217 TiB			Analysis	
977 ТІВ	 Fermilab Public dCache:StorageGroup:minerva_PublicScratchPools 	1 TiB	160 TiB	36 TiB	13 TiB			Analysis (Persistent)	
	Fermilab Public dCache:StorageGroup:minerva_MinervaWritePools	38 TiB	65 TiB	64 TiB	65 TiB				
	Fermilab Public dCache:StorageGroup:minerva_Geant4ReadWritePools	0 GiB	7 TiB	1 TiB	0 GiB				
ві тів	 Fermilab Public dCache:StorageGroup:minerva_SlowReadWritePools 	0 GiB	7 TiB	1 TiB	0 GiB				┝
6 ТВ	 Fermilab Public dCache:StorageGroup:minerva_SlowPublicScratchPools 	0 GiB	904 GiB	138 GiB	0 GiB		Current	248 TB (actual)	
							2020	250 TB	
0 GB 1/1 4/1 7/1 10/1									t

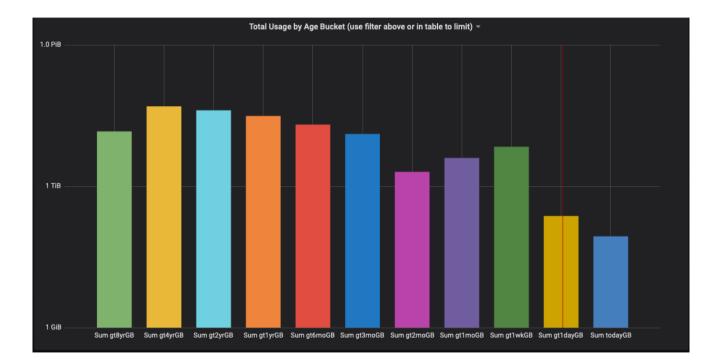

Total r/w (tape backed): 6264 TB Total scratch: 2333 TB Total persistent: 2576 TB Total other: 2131 TB

<Minerva>


Current	248 TB (actual)	126 TB (actual)	
2020	250 TB	125 TB	
2021 250 TB		125 TB	
2022	250 TB	125 TB	

Other Dedicated (Write)

Tape - Usage and Predictions (in PB)


Disk: NAS Usage and Predictions (in TB Units)

Reallocated unused minerva-data space to minerva-app in 2020 to make room for new analyzers

<Minerva>

Age of files in NAS

Data Lifetimes

Data preservation project will drive long-term storage usage. No estimate yet of final AnaTuple size.

Can archive production after data preservation AnaTuples complete

What Do You Want to Achieve in Computing Over Next Three Years

Goals	Where does the experiment need to contribute	Where does SCD need to contribute		
Migrate to SL 7 for Production and Analysis	Testing on SL7 node Monitor issues as they evolve	SCD already provided SL 7 node		
ML Vertexing Production for Antineutrino Dataset	New production team needs to train an expert	Access to Wilson cluster		
Deliver Data Preservation Product	Porting existing analyses to data preservation format	Best practices for maintaining a github repository		

Anything else?

- Migrating PlotUtils to github
 - Nearly all MINERvA software uses CVS now
 - PlotUtils = core of post-production analysis
 - Part of data preservation product
 - Coordinating with Office of Technology Transfer about publication and license requirements

Facility Costs (K\$) for MINERVA ("Amazon equivalent" service)						
	CPU	Таре	dCache Disk	NAS Storage		
2020	106	34	31	30		
2021	91	37	31	30		
2022	78	54	31	30		