ProtoDUNE-SP Physics Analysis

Tingjun Yang (FNAL) LBNC Review March 4, 2020

Outline

- Status of the ProtoDUNE-SP performance paper
- What can we learn from ProtoDUNE-SP data beyond the performance paper
 - Better understanding of the LArTPC technology
 - Physics measurements: hadron-argon cross sections
 - Push the limit on reconstruction capabilities
 - Provide critical information on DUNE far detector

PREPARED FOR SUBMISSION TO JINST

First results on ProtoDUNE-SP LArTPC performance from

a test beam run at the CERN Neutrino Platform

- Aug. 16, 2019: Overleaf document created
- Dec. 13, 2019: Group review started
- Feb. 28, 2020: ARC review started
- Expected future path:

.

- Collaboration review starts in middle March
- Paper will be submitted by the end of March or early April

Work on the technical paper has started:

"Design, construction and operation of the ProtoDUNE-SP liquid argon TPC" Gina Rameika is leading the work. A technical team is formed with four people.

Outline of the paper

- 1. Introduction
- 2. The ProtoDUNE-SP detector
- 3. CERN beam line instrumentation
- 4. TPC characterization
- 5. Photon detector characterization
- 6. TPC response
- 7. Photon detector response
- 8. Conclusions

85 pages, 64 figures, 4 tables.

ProtoDUNE-SP Run 5809 Event 10747 @2018-11-07 11:58:22 UTC

ProtoDUNE-SP Run 5770 Event 50648 @2018-11-02 20:32:06 UTC

T. Yang I LBNC Review ProtoDUNE-SP

A muon bundle event.

TPC response

- Detector response is calibrated using cosmic ray muons.
- The calibration constants work well on beam particles (muons, pion, protons, positrons).

Developing alterative calibration scheme based on pulser measurements.
 Import for DUNE because of low cosmic-ray rate.

TPC + CE PERFORMANCE :

dE/dx - Ptcl Id

- Very well understood detector response to particles of different species.
- Excellent separation of muons/pions and protons using calorimetric information.

Photon detector characterization

- 3 light collectors:
 - ARAPUCA, double-shift light guide, dip-coated light guide
- 3 photosensors
 - SensL SiPM, two types of Hamamatsu MPPC
- Stable gain

ProtoDUNE-SP

3.0

2.5

- High signal-to-noise ratio (6-12)
- Efficiencies measured using electron and muon data.

12-H-MPPC

LINEARITY

Observed (first approx) linear response over the entire range of energies.

The slope gives the light yield LY =

102Ph/GeV

from (only) one ARAPUCA PhDet module, relative to a diffused light source (EM shower) at a distance of about 3 m

calorimetric response to EM showers from *LIGHT Signal*

single ARAPUCA module (~0.5‰ photo-sensitive area coverage) Resolution: 10% @ 2 GeV

New CRT data

- CRT was actively used during the beam runs.
- CRT was reactivated in Nov 2019.
 - Stability of CRT readout was much improved.
- Three weeks (Nov 6 Dec 6) of dedicated data taking with CRT triggers:
 - Detector calibration and stability studies

Excellent LAr purity. No electron lifetime correction needed.

On-going analyses

- Detector responses
 - Improve space charge measurements
 - Electron energy resolution
 - Electron/photon response
 - Michel electron spectrum
- Hadron-argon cross sections
 - Inclusive pion- and proton-argon cross sections
 - Exclusive channels: pion absorption, pion charge exchange
- Testing new simulation and reconstruction tools
- Focusing on the connection to the DUNE far detector.

Space charge effects

- Current method measures spatial distortion at TPC faces and calculates distortion in the bulk through interpolation.
- A novel method is developed to measure spatial distortion using anode-cathode-anode tracks.
- Spatial distortion is negligible at anode
 - Reference points to measure distortion
- Direct measurement of distortion.

More space charge measurements

- Another approach is to use CRT tagged tracks to measure spatial distortion.
- CRT strips provide information on the track muon trajectory.
- Compare the measured distortion in drift direction between this method and the standard method.

Track Point Displacements in X at Z=350 for Nov 2019 Runs

Electron energy measurement in TPC

- Calorimetric measurement of electron energy in TPC
- Bias in energy measurement is well understood:
 - Upstream energy loss
 - Threshold in hit finding
 - Bias from Gaussian fit in hit reconstruction
 - Pandora reconstruction inefficiency
 - Recombination
- Bias and resolution in electron energy measurement is critical information for DUNE.

Electron/photon dE/dx

- Measure dE/dx at the beginning of electron or photon.
- 1 GeV beam electrons.
- Photons from 6 GeV pion interactions.
- Clear e/γ separation in dE/dx distributions.
 ArgoNeuT, PRD 95, 072005 (2017)

Hand picked events, limited statistics

Fully automated reconstruction and event selection, large statistics.

Michel electron spectrum

- Look for Michel electron hits near the stopping cosmic-ray muons.
- Excellent data and MC Michel energy spectra.
- Goal is to improve the selection and energy reconstruction so we can see the shape edge at 53 MeV – reference energy for calibration.

Electron energy loss profile

• Measure light signal in each of the ARAPUCA cell for electrons of different energies.

Shower max as a function of electron energy can be used to determine critical energy and radiation length in liquid argon.

More details in FERMILAB-CONF-20-008-ND.

Hadron-argon cross sections

- Hadron-argon cross sections provide critical information to final state interaction (FSI) in neutrino-argon interactions.
 - Collaboration with neutrino generator experts has started.
- Inclusive pion-argon and proton-argon cross sections
 - Elastic scattering and inelastic scattering
- Exclusive channels

Pion absorption

- The primary process for pion absorption on heavy nuclei is thought to be the absorption on two nucleons
 - π^+ nn \rightarrow pn, π^+ pn \rightarrow pp
 - Final state interaction will change the number of nucleons seen in the TPC
- Event selection: only protons in the final state (no charged or neutral pions)
 - CNN track/shower ID to remove γ , χ^2 PID to remove charged pions

Improvement on simulation

- A simulation task force was formed
 - Improved interface to Geant4 through refactorization of code.
 - A connection with the Geant4 community is established
 - Wire-Cell detector simulation
 - Improved detector response simulation: realistic response functions, induced charge on neighboring wires
- The simulation tuned with ProtoDUNE data will be used in DUNE far detector simulation.

Testing reconstruction tools

- The high-quality of ProtoDUNE-SP data are ideal to test reconstruction tools that will be used in DUNE.
- One powerful tool is to use convolutional neural network (CNN) to separate track and shower hits.

- Also in collaboration with ML experts to develop new tools
 - Using TensorRT improves CNN speed by a factor of 14!

Conclusions

- ProtoDUNE-SP performance paper is currently under review and will be submitted soon.
- ProtoDUNE-SP have a very strong and effective analysis team that will deliver many more results:
 - Improving the understanding of LArTPC technology
 - Physics measurements: hadron-argon cross sections
 - Valuable information for the future DUNE reconstruction and data analysis.

