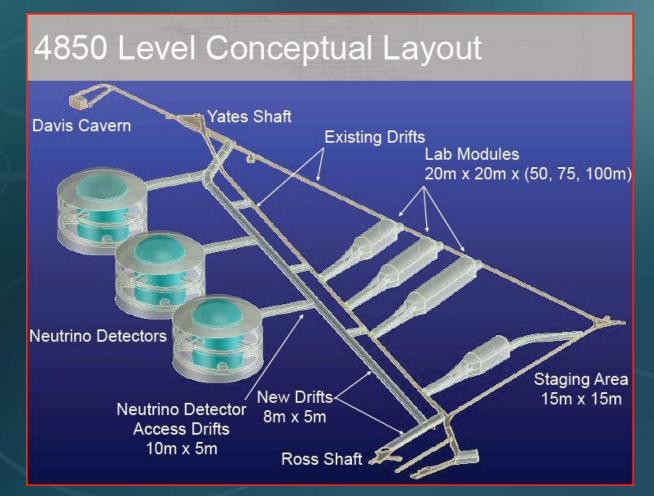
Neutrino Beamline from Fermilab to Homestake Mine

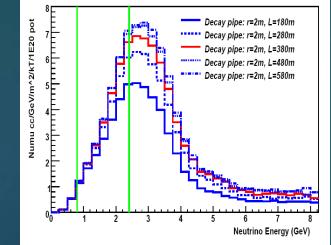
5th ANL-UC-FNAL Collaboration Meeting Monday, Feb. 2, 2009 at Argonne

Mike Martens, Fermilab


Neutrino Beamline Fermilab to Homestake 1290 km

Beamline, Target Hall, and Near Detector fit on Fermilab Site

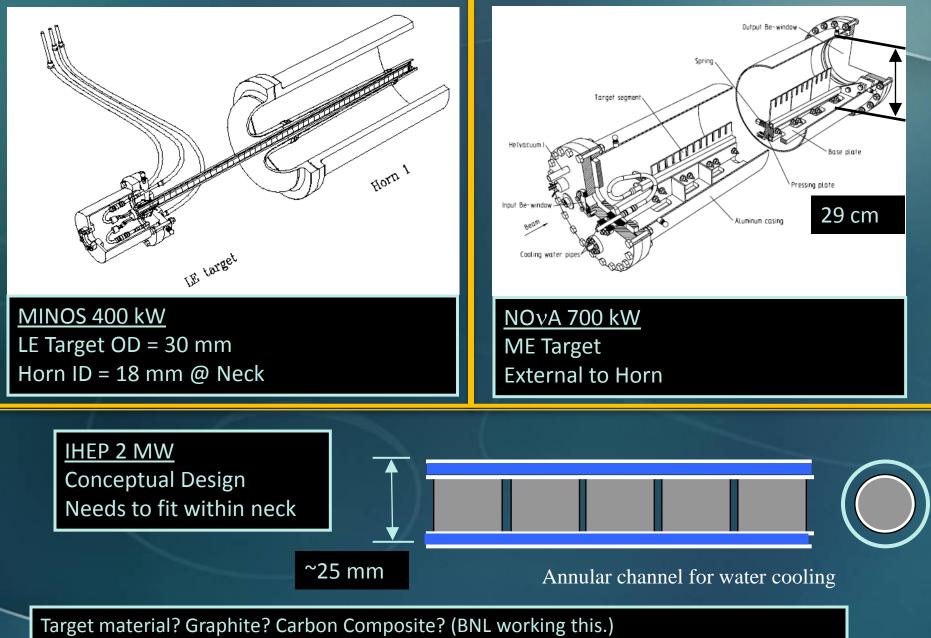
Detector at Homestake Mine



Several 100 kT water Cherenkov or Li Argon equivalent detector

Beamline Requirements*

- Large Flux of Neutrinos
 - \sim 700 kW \Rightarrow 2.3 MW proton beam power on target
- Maximum CC events at 1st and 2nd oscillation nodes
 - 2.4 GeV and 0.8 GeV
 - v cross-sections scale with energy \Rightarrow larger flux at lower E
- For $v_{\mu} \rightarrow v_{e}$ minimize NC contamination at lower energy
 - Minimize the flux of neutrinos with E > 5 GeV
- High purity v_{μ} beam
 - Reduce background from beam generated v_e


*From "Simulation of a Wide-Band Low-Energy Neutrino Beam for Very Long Baseline Neutrino Oscillation Experiments", Bishai, Heim, Lewis, Marino, Viren, Yumiceva

Homestake beamline compared to NuMI

Power is 3-5 times the NuMI design power

- More shielding, cooling, rad component handling
- NuMI Horn 1 could reach ~400 R/hr @ 700 kW
- High target power and low energy neutrinos
 - (See next slide)
- Decay pipe
 - ~400 meters versus 675 meters for NuMI
 - Radius of ~2 meters versus 1 meter for NuMI
- Downward bend of 5.8° versus 3.3°
 - Shaft will be deeper?
 - Enter the Galena-Plattville Rock?
- Near Detector Hall
 - More rate means smaller detector

Cooling? Can we get adequate cooling? Water cooling OK? How to fit within the Horn?

Decisions Needed

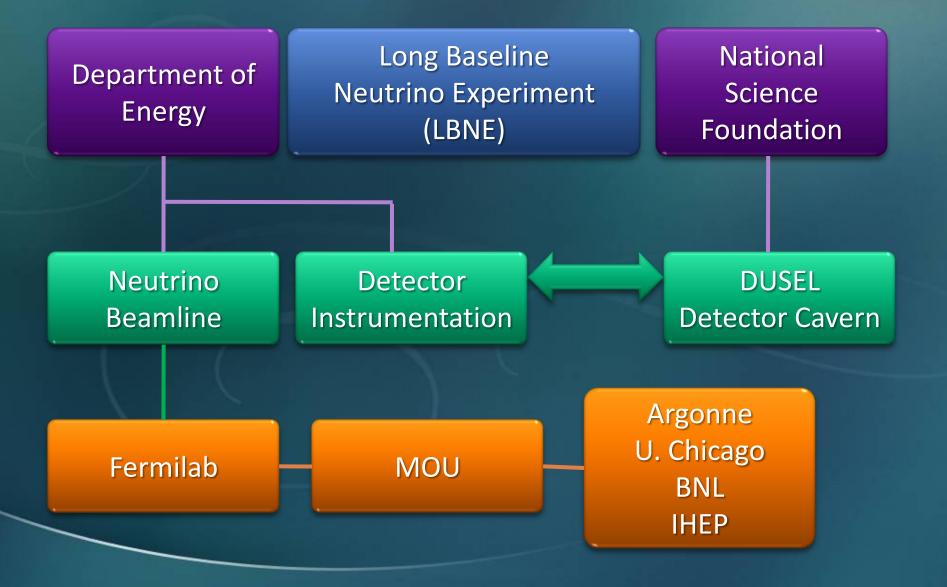
Primary Beam Energy

- 60 120 GeV is possible; choice affects the primary beam transport, beam losses, etc.
- Target-Horn Configuration
 - Affects Target Hall dimensions; shielding arrangement....
- Decay Pipe Length and Radius
 - BIG impact : excavation and shielding
- Need for muon monitoring stations
 - Prove they are needed
- Near Detector technology and size

7

High Priority R&D Work

Design of 2-3 MW Target and Horn


- Optimize Target/Horn/Decay Pipe Configuration
- Radiological Shielding and Control
 - Environmental Protection
 - Remote Component Handling
- Design of Hadron Absorber and Muon Monitor
- Primary Beamline
 - Specify beamline from MI/NuMI pointing to Homestake
- Project Definition Report for tunnels, halls, SB&O
 - Needed for an updated cost estimate
- Geological Core Samples

Timeline

Awaiting CD-0

- DOE Agency Document
- Project Definition Phase (CD-0 to CD-1)
 - Prepare a Conceptual Design Report
 - Would take 12-18 months
 - Several \$M in FY2010 for development
- CD-3 to Completion
 - 5 Years
 - Complete in ~2020
 - TEC in the \$300M to \$400M range

Possible Organization

Summary

- Able to Fit Beamline on Fermilab Site
- Preliminary Horn-Target Configuration
 - Shows we can get reasonable v spectrum
- $3-5 \times Power \Longrightarrow New Challenges$
 - Targetry, Radioactive Component Handling, ES&H,
- Awaiting CD-0
- Significant R&D Work Required
- Will Require Collaborative Effort